scholarly journals Crack Initiation Analysis in AZ31 Magnesium Alloy Based on Electron Backscatter Diffraction (EBSD)

2014 ◽  
Vol 3 ◽  
pp. 790-792
Author(s):  
Yoshihiko Uematsu ◽  
Toshifumi Kakiuchi ◽  
Yoshifumi Kamiya
2012 ◽  
Vol 630 ◽  
pp. 35-40
Author(s):  
K.H. Jung ◽  
B. Ahn ◽  
S. Lee ◽  
D.S. Choi ◽  
Y.S. Lee ◽  
...  

In this research, the effect of casting methods on the workability of magnesium alloy ZK60A was investigated by comparing two different billets, fabricated by semi-continuous casting and die casting. To determine the workability of the materials, uniaxial compression tests were conducted at different elevated temperatures and strain rate of 0.01/s. In addition, the X-ray inspection system and electron backscatter diffraction (EBSD) were employed to compare their internal defects and microstructures, respectively. The workability of ZK60A depending on the casting methods is discussed based on the obtained experimental results.


2016 ◽  
Vol 838-839 ◽  
pp. 534-539
Author(s):  
Mei Ling Guo ◽  
Ming Jen Tan ◽  
Xu Song ◽  
Beng Wah Chua

In this work, magnesium alloy sheets of non-superplastic grade AZ31 were successfully formed by a proposed hybrid superplastic forming at 400 °C within 22 min. During the forming process, hot drawing first formed the part partially from the starting metal sheet within a few seconds, and then followed by a designed gas forming process to achieve the desired conical shape by high gas pressure at a targeted strain rate. The maximum thinning of 59 % was found to occur at the first contact area between the material and the punch. The thickness distribution and superplastic deformation behavior during the hybrid superplastic forming were investigated. In addition, the microstructure evolutions of AZ31 at different forming stages were examined by electron backscatter diffraction. Superplastic forming capability of the non-superplastic grade magnesium alloy was achieved. Furthermore, the part formed by this superplastic-like forming was done faster and attained a more even material distribution than conventional superplastic forming.


2012 ◽  
Vol 217-219 ◽  
pp. 373-376 ◽  
Author(s):  
K.H. Jung ◽  
Yong Bae Kim ◽  
Byung Min Ahn ◽  
Sang Mok Lee ◽  
Jong Sup Lee ◽  
...  

In this study, the variation of workability of semi-continuously casted and extruded ZK60A magnesium alloy was investigated. To determine the deformation capability of two different billets, uniaxial compression tests were conducted at elevated temperatures and two different strain rates. In addition, the microstructural evolution was investigated using electron backscatter diffraction (EBSD) to compare the microstructure before and after the extrusion. The formability of ZK60A depending on the microstructure is discussed based on the experimental results obtained in this study, and is compared with earlier research in the literature.


Author(s):  
Yuhui Tu ◽  
Seán B Leen ◽  
Noel M Harrison

The common approach to crystal-plasticity finite element modeling for load-bearing prediction of metallic structures involves the simulation of simplified grain morphology and substructure detail. This paper details a methodology for predicting the structure–property effect of as-manufactured microstructure, including true grain morphology and orientation, on cyclic plasticity, and fatigue crack initiation in biomedical-grade CoCr alloy. The methodology generates high-fidelity crystal-plasticity finite element models, by directly converting measured electron backscatter diffraction metal microstructure grain maps into finite element microstructural models, and thus captures essential grain definition for improved microstructure–property analyses. This electron backscatter diffraction-based method for crystal-plasticity finite element model generation is shown to give approximately 10% improved agreement for fatigue life prediction, compared with the more commonly used Voronoi tessellation method. However, the added microstructural detail available in electron backscatter diffraction–crystal-plasticity finite element did not significantly alter the bulk stress–strain response prediction, compared to Voronoi tessellation–crystal-plasticity finite element. The new electron backscatter diffraction-based method within a strain-gradient crystal-plasticity finite element model is also applied to predict measured grain size effects for cyclic plasticity and fatigue crack initiation, and shows the concentration of geometrically necessary dislocations around true grain boundaries, with smaller grain samples exhibiting higher overall geometrically necessary dislocations concentrations. In addition, minimum model sizes for Voronoi tessellation–crystal-plasticity finite element and electron backscatter diffraction–crystal-plasticity finite element models are proposed for cyclic hysteresis and fatigue crack initiation prediction.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 745
Author(s):  
Jianhui Bai ◽  
Pengfei Yang ◽  
Zhiyuan Yang ◽  
Qi Sun ◽  
Li Tan

Although pre-induced {1012} twins could strengthen magnesium and its alloys, the origin of such a strengthening phenomenon remains questionable. This is because twins can simultaneously change the size of grains and the texture features of the initial material. In the present work, the effect of pre-induced {1012} twins on the tension property of an extruded magnesium alloy has been investigated through a combination of electron backscatter diffraction, transmission electron microscope, and mechanical tests. Samples with and without {1012} twinning boundaries, but possessing an almost identical texture characteristic, were prepared by pre-compression perpendicular to the extrusion direction. Subsequently, these pre-strained samples were tensioned along the extrusion direction. The results indicate that the pre-induced {1012} twinning boundaries can indeed enhance the tension strength of magnesium alloys, but only slightly. The effect is closely associated with the amount of pre-strain. Correspondingly, the possible mechanisms behind such phenomena are given and discussed.


Sign in / Sign up

Export Citation Format

Share Document