Investigation into Texture and Structure of MA2-1PCh Magnesium Alloy after Equal Channel Angular Extrusion and Annealing by Quantitative X-Ray Texture Analysis and Electron Backscatter Diffraction

2017 ◽  
Vol 53 (15) ◽  
pp. 1467-1472
Author(s):  
V. N. Serebryany ◽  
G. S. D’yakonov ◽  
M. A. Khar’kova ◽  
V. I. Kopylov ◽  
S. V. Dobatkin
2012 ◽  
Vol 630 ◽  
pp. 35-40
Author(s):  
K.H. Jung ◽  
B. Ahn ◽  
S. Lee ◽  
D.S. Choi ◽  
Y.S. Lee ◽  
...  

In this research, the effect of casting methods on the workability of magnesium alloy ZK60A was investigated by comparing two different billets, fabricated by semi-continuous casting and die casting. To determine the workability of the materials, uniaxial compression tests were conducted at different elevated temperatures and strain rate of 0.01/s. In addition, the X-ray inspection system and electron backscatter diffraction (EBSD) were employed to compare their internal defects and microstructures, respectively. The workability of ZK60A depending on the casting methods is discussed based on the obtained experimental results.


2019 ◽  
Vol 52 (4) ◽  
pp. 828-843 ◽  
Author(s):  
Dorian Delbergue ◽  
Damien Texier ◽  
Martin Lévesque ◽  
Philippe Bocher

X-ray diffraction (XRD) is a widely used technique to evaluate residual stresses in crystalline materials. Several XRD measurement methods are available. (i) The sin2ψ method, a multiple-exposure technique, uses linear detectors to capture intercepts of the Debye–Scherrer rings, losing the major portion of the diffracting signal. (ii) The cosα method, thanks to the development of compact 2D detectors allowing the entire Debye–Scherrer ring to be captured in a single exposure, is an alternative method for residual stress measurement. The present article compares the two calculation methods in a new manner, by looking at the possible measurement errors related to each method. To this end, sets of grains in diffraction condition were first identified from electron backscatter diffraction (EBSD) mapping of Inconel 718 samples for each XRD calculation method and its associated detector, as each method provides different sets owing to the detector geometry or to the method specificities (such as tilt-angle number or Debye–Scherrer ring division). The X-ray elastic constant (XEC) ½S 2, calculated from EBSD maps for the {311} lattice planes, was determined and compared for the different sets of diffracting grains. It was observed that the 2D detector captures 1.5 times more grains in a single exposure (one tilt angle) than the linear detectors for nine tilt angles. Different XEC mean values were found for the sets of grains from the two XRD techniques/detectors. Grain-size effects were simulated, as well as detector oscillations to overcome them. A bimodal grain-size distribution effect and `artificial' textures introduced by XRD measurement techniques are also discussed.


Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 406
Author(s):  
Samiha Saad ◽  
Zakaria Boumerzoug ◽  
Anne Laure Helbert ◽  
François Brisset ◽  
Thierry Baudin

The objective of this work is to study, on a copper wire, the effect of TiO2-nanoparticles on electrodeposited nickel. Both the microstructure and surface morphology (texture) of the coating were investigated. This deposit is obtained from baths of sulfated electroplating Watts. The Ni-TO2 composite coating is deposited at a temperature of 45 °C. The composite deposit is prepared by adding nanoparticles of TiO2 to the electrolyte. The characterization has been carried out by X-ray diffraction, scanning electron microscopy, microhardness measurements, and electron backscatter diffraction (EBSD). Vickers microhardness was used to characterize the mechanical properties of the electrodeposited nickel. The results showed the effects of the TiO2 on the composition, the surface morphology, and the hardness of the deposited layer. However, there was not an effect of TiO2 nanoparticles on texture.


2010 ◽  
Vol 200 (8) ◽  
pp. 082013 ◽  
Author(s):  
A Koblischka-Veneva ◽  
M R Koblischka ◽  
J Schmauch ◽  
A Mitra ◽  
A K Panda

Sign in / Sign up

Export Citation Format

Share Document