Synthesis, characterization and catalytic activity of co-doped Ag–Au–ZnO for MB dye degradation under UV-A light

2014 ◽  
Vol 22 ◽  
pp. 83-91 ◽  
Author(s):  
A. Senthilraja ◽  
B. Subash ◽  
B. Krishnakumar ◽  
D. Rajamanickam ◽  
M. Swaminathan ◽  
...  
RSC Advances ◽  
2021 ◽  
Vol 11 (23) ◽  
pp. 14063-14070
Author(s):  
M. Morishita ◽  
A. Nozaki ◽  
H. Yamamoto ◽  
N. Fukumuro ◽  
M. Mori ◽  
...  

The catalytic activity of the Co-doped WC is 30% higher than that of Pt nanoparticles for the hydrogen evolution reaction arising from an internal magnetic field.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1522
Author(s):  
Salma Jabeen ◽  
Muhammad Sufaid Khan ◽  
Rozina Khattak ◽  
Ivar Zekker ◽  
Juris Burlakovs ◽  
...  

The catalytic activity of Pd/ZrO2 was studied in terms of the degradation of rhodamine-B dye in the presence of hydrogen peroxide. Pd/ZrO2 was prepared by impregnation method, calcined at 750 °C and characterized by XRD, SEM and EDX. The catalyst showed good catalytic activity for dye degradation at 333 K, using 0.05 g of the catalyst during 5 h. The reaction kinetics followed the pseudo-first order kinetics. The Freundlich, Langmuir and Temkin isotherms were applied to the data and the best fit was obtained with Freundlich isotherm. Thermodynamic parameters, like ΔH, ΔG and ΔS were also calculated. The negative values of ΔH (−291.406 KJ/mol) and Gibbs free energy (ΔG) showed the exothermic and spontaneous nature of the process. The positive ΔS (0.04832 KJ/mol K) value showed suitable affinity of catalyst for dye degradation. The catalyst was very stable, active and was easily separated from the reaction mixture by filtration. It can be concluded from the results that the prepared catalyst could be effectively used in dyes degradation/removal from water subjected to further validation and use for various dyes.


2018 ◽  
Vol 79 (5) ◽  
pp. 947-957 ◽  
Author(s):  
Mahabubur Chowdhury ◽  
Sarah Kapinga ◽  
Franscious Cummings ◽  
Veruscha Fester

Abstract Advanced oxidation processes based on sulphate radical generated by peroxymonosulphate (PMS) activation is a promising area for environmental remediation. One of the biggest drawbacks of heterogeneous PMS activation is catalyst instability and metal ion leaching. In this study, a simple organic binder mediated route was explored to substitute Ti4+ ions into the Co3O4 host lattice structure to create a Co-O-Ti bond to minimise cobalt leaching during methyl orange degradation. The catalyst was characterised by X-ray diffraction, and scanning and transmission electron microscopy. The as-prepared catalysts with Co3O4:TiO2 ratio of 70:30 exhibited minimal leaching (0.9 mg/L) compared to other ratios studied. However, the pristine Co3O4 exhibited highest catalytic activity (rate constant = 0.41 min−1) and leaching (26.7 mg/L) compared to composite material (70:30 Co3O4:TiO2). Interestingly, the morphology of the composite and leaching of Co2+ ions were found to be temperature dependent, as an optimum temperature ensured strong Co-O-Ti bond for prevention of Co2+ leaching. The classical quenching test was utilised to determine the presence and role of radical species on methyl orange degradation. The fabricated catalyst also exhibited good catalytic activity in degrading mixed dyes and good recyclability, making it a potential candidate for commercial application.


2019 ◽  
Vol 127 ◽  
pp. 140-150 ◽  
Author(s):  
Saeed Sajjadi ◽  
Alireza Khataee ◽  
Reza Darvishi Cheshmeh Soltani ◽  
Aliyeh Hasanzadeh

Catalysts ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1163
Author(s):  
Ning Cui ◽  
Kexiao Bi ◽  
Wei Sun ◽  
Qianqian Wu ◽  
Yinan Li ◽  
...  

MOF–derived porous carbon is a type of promising catalyst to replace expensive Pt–based catalysts for oxygen reduction reaction (ORR). The catalytic activity for ORR depends closely on pyrolysis conditions. In this work, a Co–doped ZIF–8 material was chosen as a research object. The effect of pyrolysis conditions (temperature, heating rate, two–step heating) on the ORR performance of ZIF–derived carbon catalysts was systematically studied. The Co–ZIF–8 catalyst carbonized at 900 °C exhibits better ORR catalytic activity than that carbonized at 800 °C and 1000 °C. Moreover, a low heating rate can enhance catalytic activity. Two–step pyrolysis is proven to be an effective way to improve the performance of catalysts. Reducing the heating rate in the low–temperature stage is more beneficial to the ORR performance, compared to the heating rate in the high–temperature stage. The results show that the Co–ZIF–8 catalyst exhibits the best performance when the precursor was heated to 350 °C at 2 °C/min, and then heated to 900 °C at 5 °C/min. The optimum Co–ZIF–8 catalyst shows a half–wave potential of 0.82 V and a current density of 5.2 mA·cm−2 in 0.1 M KOH solution. It also exhibits high content of defects and good graphitization. TEM mapping shows that Co and N atoms are highly dispersed in the polyhedral carbon skeleton. However, two–step pyrolysis has no significant effect on the stability of the catalyst.


2021 ◽  
Author(s):  
Xiaoying Gao ◽  
Xuan Xie ◽  
Kanjun Sun ◽  
Xiaofei Lei ◽  
Tianyu Hou ◽  
...  

Fe, N co-doped carbon electrocatalyst is one of the most attractive alternatives to Pt/C catalysts due to its high catalytic activity, excellent stability and low cost. However, obtaining stable and...


2019 ◽  
Vol 3 (5) ◽  
pp. 1307-1316 ◽  
Author(s):  
I. L. Alonso-Lemus ◽  
M. Z. Figueroa-Torres ◽  
D. Lardizabal-Gutíerrez ◽  
P. Bartolo-Pérez ◽  
J. C. Carrillo-Rodríguez ◽  
...  

In this work, the use of chicken manure as the raw material for obtaining metal-free biocarbons as electrocatalysts was studied.


2019 ◽  
Vol 9 (21) ◽  
pp. 5906-5914 ◽  
Author(s):  
Yongxi Zan ◽  
Zhengping Zhang ◽  
Meiling Dou ◽  
Feng Wang

A sulfur, nitrogen and phosphorus ternary-doped cattle-bone-derived hierarchically porous carbon metal-free electrocatalyst was synthesized, exhibiting superior oxygen reduction performance compared to Pt/C.


Sign in / Sign up

Export Citation Format

Share Document