Biocompatible hybrid chitosan/hydroxyapatite coating applied on the AZ31 Mg alloy substrate: in-vitro corrosion, surface and structure studies

2022 ◽  
pp. 103153
Author(s):  
Sh. Roshan ◽  
H. Eivaz Mohammadloo ◽  
A.A. Sarabi ◽  
M. Afshari
2019 ◽  
Vol 53 (19) ◽  
pp. 2661-2673 ◽  
Author(s):  
Balraj Singh ◽  
Gurpreet Singh ◽  
Buta Singh Sidhu

Magnesium (Mg) and its alloys are promising candidates for biodegradable bio-implants. However, the excessive corrosion in the physiological environment and subsequent decline in the mechanical integrity of Mg and its alloys have limited their utility as biomaterials. In the present study, an attempt has been made to improve the corrosion resistance of Mg alloy ZK60 plasma sprayed with tantalum (Ta)-reinforced hydroxyapatite coating. The experiment was conducted with three varied levels, i.e. 10, 20 and 30 weight percent (wt%) of Ta-content in hydroxyapatite coating. The coatings were characterized and in vitro corrosion behaviour was investigated by electrochemical measurements in Ringer's solution along with the analysis of surface properties. The corrosion resistance of the Mg alloy increased with the incremental increase in Ta reinforcement in hydroxyapatite coating. An increase in the protection efficiency was analysed for the Ta-reinforced hydroxyapatite coatings (∼10%, 18% and 23% for hydroxyapatite-10Ta, hydroxyapatite-20Ta and hydroxyapatite-30Ta, respectively) as compared to the pure hydroxyapatite coating. The hydroxyapatite coating effectively increased the surface hardness of the Mg alloy and Ta reinforcement further enhanced it. Surface roughness decreased with the incremental increase in Ta-content in hydroxyapatite coating. Wettability analysis revealed the hydrophilic nature of pure hydroxyapatite and Ta-reinforced hydroxyapatite coatings. The results of the study suggest that the proposed Ta reinforcement in hydroxyapatite is potentially important for biodegradable Mg bio-implants.


Author(s):  
Adekanmbi Isaiah ◽  
Ferguson Louisa ◽  
Tsimbouri P M ◽  
Riehle Mathis ◽  
Kubba Haytham ◽  
...  

2019 ◽  
Vol 55 (8) ◽  
pp. 3571-3587 ◽  
Author(s):  
M. Kalaiyarasan ◽  
K. Saranya ◽  
N. Rajendran

2019 ◽  
Vol 375 ◽  
pp. 46-53 ◽  
Author(s):  
Salim Levent Aktug ◽  
Salih Durdu ◽  
Sitki Aktas ◽  
Emine Yalcin ◽  
Metin Usta

2021 ◽  
Vol 22 (2) ◽  
pp. 909
Author(s):  
Andreea-Mariana Negrescu ◽  
Madalina-Georgiana Necula ◽  
Adi Gebaur ◽  
Florentina Golgovici ◽  
Cristina Nica ◽  
...  

Due to its excellent bone-like mechanical properties and non-toxicity, magnesium (Mg) and its alloys have attracted great interest as biomaterials for orthopaedic applications. However, their fast degradation rate in physiological environments leads to an acute inflammatory response, restricting their use as biodegradable metallic implants. Endowing Mg-based biomaterials with immunomodulatory properties can help trigger a desired immune response capable of supporting a favorable healing process. In this study, electrospun poly(ε-caprolactone) (PCL) fibers loaded with coumarin (CM) and/or zinc oxide nanoparticles (ZnO) were used to coat the commercial AZ31 Mg alloy as single and combined formulas, and their effects on the macrophage inflammatory response and osteoclastogenic process were investigated by indirect contact studies. Likewise, the capacity of the analyzed samples to generate reactive oxygen species (ROS) has been investigated. The data obtained by attenuated total reflection Fourier-transform infrared (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS) analyses indicate that AZ31 alloy was perfectly coated with the PCL fibers loaded with CM and ZnO, which had an important influence on tuning the release of the active ingredient. Furthermore, in terms of degradation in phosphate-buffered saline (PBS) solution, the PCL-ZnO- and secondary PCL-CM-ZnO-coated samples exhibited the best corrosion behaviour. The in vitro results showed the PCL-CM-ZnO and, to a lower extent, PCL-ZnO coated sample exhibited the best behaviour in terms of inflammatory response and receptor activator of nuclear factor kappa-B ligand (RANKL)-mediated differentiation of RAW 264.7 macrophages into osteoclasts. Altogether, the results obtained suggest that the coating of Mg alloys with fibrous PCL containing CM and/or ZnO can constitute a feasible strategy for biomedical applications.


2013 ◽  
Vol 51 (5) ◽  
pp. 325-332 ◽  
Author(s):  
Sung Hyuk Park ◽  
Seong-Gu Hong ◽  
Chong Soo Lee ◽  
Ha Sik Kim

2010 ◽  
Vol 48 (04) ◽  
pp. 305-314 ◽  
Author(s):  
Byung Jo Jung ◽  
Myung Jae Lee ◽  
Yong Bum Park
Keyword(s):  
Mg Alloy ◽  

2018 ◽  
Vol 60 (10) ◽  
pp. 1021-1025 ◽  
Author(s):  
Liwei Lu ◽  
Zhenru Yin ◽  
Jun Zhao ◽  
Dongfeng Shi ◽  
Chuming Li

Sign in / Sign up

Export Citation Format

Share Document