Effect of austempering temperature on corrosion evolution during immersion of high carbon nano-structured bainitic steel in aqueous chloride environment

Materialia ◽  
2021 ◽  
pp. 101282
Author(s):  
Kritika Singh ◽  
Aparna Singh
Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 384
Author(s):  
Tomasz Dembiczak ◽  
Marcin Knapiński

Based on the research results, coefficients in constitutive equations, describing the kinetics of dynamic, meta-dynamic, and static recrystallization in high-carbon bainitic steel during hot deformation were determined. The developed mathematical model takes into account the dependence of the changing kinetics in the structural size of the preliminary austenite grains, the value of strain, strain rate, temperature, and time. Physical simulations were carried out on rectangular specimens. Compression tests with a flat state of deformation were carried out using a Gleeble 3800. Based on dilatometric studies, coefficients were determined in constitutive equations, describing the grain growth of the austenite of high-carbon bainite steel under isothermal annealing conditions. The aim of the research was to verify the developed mathematical models in semi-industrial conditions during the hot-rolling process of high-carbon bainite steel. Analysis of the semi-industrial studies of the hot-rolling and long-term annealing process confirmed the correctness of the predicted mathematical models describing the microstructure evolution.


2019 ◽  
Vol 14 ◽  
pp. 729-737 ◽  
Author(s):  
P Ponguru Senthil ◽  
K Sudhakara Rao ◽  
Hillol Kumar Nandi ◽  
Vajinder Singh ◽  
Suraj Kumar ◽  
...  

2021 ◽  
Vol 57 (1) ◽  
pp. 115-124
Author(s):  
E. Colin-García ◽  
A. Cruz-Ramírez ◽  
J.A. Romero-Serrano ◽  
R.G. Sánchez-Alvarado ◽  
V.H. Gutiérrez-Pérez ◽  
...  

Samples of ductile iron alloyed with 0.88 % Ni with a nodule count of 606, 523, and 290 nod/mm2 were obtained from sand cast plates of different thickness in the range from 8.46 to 25.4 mm. The effect of the nodule count was evaluated during the austempering process held at 285?C and austempering times of 15, 30, 45, 60, 70, and 90 min. The volume fraction of high carbon austenite increased when the nodule count increased, however, the carbon content of the high carbon austenite kept almost constant. The process window was narrow, requiring a lower austempering time when the nodule count increased. The combination of a higher nodule count and low austempering temperature allowed obtaining a fine ausferritic microstructure which led to higher Brinell hardness and tensile strength. The process window was determined by XRD measurements and it was in good agreement with the microstructural and hardness evolution as the austempering time increased.


2012 ◽  
Vol 706-709 ◽  
pp. 2158-2163 ◽  
Author(s):  
Bartosz Koczurkiewicz

The industrial development require new materials characterized highest mechanical properties. The conditions of thermo-mechanical treatment proved to highest level of mechanical properties for steels. Another method of making strong materials is to reduce the scale of the microstructure using heat treatment [1]. The paper presents the results of investigation into the effect of time and temperature variations during isothermal annealing on the mechanical properties of high carbon (c.a. 0,8%C) bainitic steel. Chemical composition of that steel (addition Si, Mn, Mo and Cr) obtain high level of tensile strength and good plastic properties. The analyzing of published results of researches of high carbon bainitic steels shown, that transformation of bainite can take between 2 to 60 days within the temperature range 125÷325°C [2,3] Based on results of researches of investigated steel a isothermal annealing in temperature range 200÷300°C were done. The experiments were done for 24, 50 and 100 hours of annealing. After that the mechanical tests were done. A Zwick Z100 testing machine was used for tests. The force and elongation values were recorded. On their basis, the proof stress and tensile strength of the steel tested were determined as a function of annealing temperature. The microstructure were determinated too.


Author(s):  
Peter Kirbiš ◽  
Tomaž Vuherer ◽  
Tomaž Irgolič ◽  
Ivan Anžel

Sign in / Sign up

Export Citation Format

Share Document