Species delimitation in the European species of Clavulina (Cantharellales, Basidiomycota) inferred from phylogenetic analyses of ITS region and morphological data

2009 ◽  
Vol 113 (11) ◽  
pp. 1261-1270 ◽  
Author(s):  
Ibai Olariaga ◽  
Begoña M. Jugo ◽  
Koldo García-Etxebarria ◽  
Isabel Salcedo
Karstenia ◽  
2021 ◽  
pp. 78-87
Author(s):  
Samina Sarwar ◽  
Arooj Naseer ◽  
Abdul N. Khalid

<em>Cyanoboletus macroporus</em> belonging to <em>C. pulverulentus</em> species complex is designated as a new species from the moist temperate and sub-alpine oak forests of Pakistan after in depth macroscopic, microscopic and phylogenetic analyses using the ITS region of nrDNA as well as comparison with allied taxa. This species belonging to Boletoid group is morphologically distinguished from allied taxa (<em>Cyanoboletus flavosanguineus</em>, <em>C. hymenoglutinosus</em>, <em>C. pulverulentus</em>, <em>C. rainisii</em>, and <em>C. sinopulverulentus</em>) by wider openings of pores. <em>C. macroporus</em> is also phylogenetically distinct from <em>C. sinopulverulentus</em> and <em>C. pulverulentus</em>, the most closely related species. Phylogenetic analysis outlined the existence of previously unknown species of this genus. Field photographs of fresh basidocarps and line drawings of micro-characters are provided along with a phylogenetic tree as well as a comparison table and a key of distinctive features of all the species in this genus. This is the first authentic species belonging to <em>Cyanoboletus</em> from Pakistan. Previously, only <em>C. pulverulentus</em> has been mentioned in literature, but no morphological data is available regarding this report. With the addition of this taxon, species number of <em>Cyanoboletus</em> will increase to eight. From Pakistan, despite of the fact that there is great diversity of mushrooms in moist temperate areas (Yousaf et al. 2012), this is the first study that describes a species belonging to <em>Cyanoboletus</em> genus. Previously only one ambiguous species, <em>Cyanoboletus pulverulentus</em>, has been mentioned in literature (Iqbal & Khalid 1996), but with no available materials that could confirm this finding. In this study, <em>Cyanoboletus macroporus</em> is described as a new to science and increase the current species number of <em>Cyanoboletus</em> to eight.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3516 ◽  
Author(s):  
Sohath Z. Yusseff-Vanegas ◽  
Ingi Agnarsson

Correct identification of forensically important insects, such as flies in the family Calliphoridae, is a crucial step for them to be used as evidence in legal investigations. Traditional identification based on morphology has been effective, but has some limitations when it comes to identifying immature stages of certain species. DNA-barcoding, using COI, has demonstrated potential for rapid and accurate identification of Calliphoridae, however, this gene does not reliably distinguish among some recently diverged species, raising questions about its use for delimitation of species of forensic importance. To facilitate DNA based identification of Calliphoridae in the Caribbean we developed a vouchered reference collection from across the region, and a DNA sequence database, and further added the nuclear ITS2 as a second marker to increase accuracy of identification through barcoding. We morphologically identified freshly collected specimens, did phylogenetic analyses and employed several species delimitation methods for a total of 468 individuals representing 19 described species. Our results show that combination of COI + ITS2 genes yields more accurate identification and diagnoses, and better agreement with morphological data, than the mitochondrial barcodes alone. All of our results from independent and concatenated trees and most of the species delimitation methods yield considerably higher diversity estimates than the distance based approach and morphology. Molecular data support at least 24 distinct clades within Calliphoridae in this study, recovering substantial geographic variation forLucilia eximia, Lucilia retroversa, Lucilia ricaandChloroprocta idioidea, probably indicating several cryptic species. In sum, our study demonstrates the importance of employing a second nuclear marker for barcoding analyses and species delimitation of calliphorids, and the power of molecular data in combination with a complete reference database to enable identification of taxonomically and geographically diverse insects of forensic importance.


Author(s):  
Tânia F. L. Vicente ◽  
Micael F. M. Gonçalves ◽  
Cláudio Brandão ◽  
Cátia Fidalgo ◽  
Artur Alves

Fungal communities associated with macroalgae remain largely unexplored. To characterize algicolous fungal communities using culture dependent methods, macroalgae were collected from different sampling sites in the Ria de Aveiro estuary, Portugal. From a collection of 486 isolates that were obtained, 213 representative isolates were selected through microsatellite-primed PCR (MSP-PCR) fingerprinting analysis. The collection yielded 33 different genera, which were identified using the ITS region of the rDNA. The results revealed that the most abundant taxa in all collections were Acremonium-like species: Alternaria, Cladosporium, Leptobacillium and Penicillium. The fungal community composition varied with macroalgae species. Through multilocus phylogenetic analyses based on ITS, tub2, tef1-α and actA sequences, in addition to detailed morphological data, we propose Cladosporium rubrum sp. nov. (type strain=CMG 28=MUM 19.39) and Hypoxylon aveirense sp. nov. (type strain=CMG 29=MUM 19.40) as novel species.


MycoKeys ◽  
2019 ◽  
Vol 47 ◽  
pp. 97-137 ◽  
Author(s):  
Janett Riebesehl ◽  
Eugene Yurchenko ◽  
Karen K. Nakasone ◽  
Ewald Langer

Xylodon (Hymenochaetales, Basidiomycota) is the largest segregate genus of Hyphodontia s.l. Based on molecular and morphological data, 77 species are accepted in Xylodon to date. Phylogenetic analyses of ITS and 28S sequences, including 38 new ITS and 20 28S sequences of Xylodon species, revealed four species new to science. The new taxa X.exilis, X.filicinus, X.follis and X.pseudolanatus from Taiwan, Nepal, Réunion, Belize, and USA are described and illustrated. In addition, species concepts for Odontiavesiculosa from New Zealand and Xylodonlanatus from U.S.A. are revised and the new name X.vesiculosus is proposed. Phylogenetic analyses of the ITS region placed X.spathulatus, X.bubalinus and X.chinensis in a strongly supported clade and demonstrated that they are conspecific. Palifer and Odontiopsis are synonymised under Xylodon based on morphological and sequence data. The following new combinations are proposed: X.erikssonii, X.gamundiae, X.hjortstamii, X.hyphodontinus, X.septocystidiatus and X.verecundus. Line drawings of X.cystidiatus, X.hyphodontinus, X.lanatus and X.vesiculosus, as well as photographs of X.raduloides basidiomata, are provided. A key to X.lanatus and similar species is presented.


2017 ◽  
Author(s):  
Sohath Z Yusseff-Vanegas ◽  
Ingi Agnarsson

Correct identification of forensically important insects, such as flies in the family Calliphoridae, is a crucial step for them to be used as evidence in legal investigations. Traditional identification based on morphology has been effective, but has some limitations when it comes to identify immature stages of certain species. DNA-barcoding, using COI, has demonstrated potential for rapid and accurate identification of Calliphoridae, however, this gene does not reliably distinguish among some recently diverged species, raising questions about its use for delimitation of species of forensic importance. To facilitate DNA based identification of Calliphoridae in the Caribbean; we developed a vouchered reference collection from across the region, and a DNA sequence database, and further added the nuclear ITS2 as a second marker to increase accuracy of identification through barcoding. We morphologically identified freshly collected specimens, did phylogenetic analyses and employed several species delimitation methods for a total of 468 individuals representing 19 described species. Our results show that combination of COI + ITS2 genes yields more accurate identification and diagnoses, and better agreement with morphological data, than the mitochondrial barcodes alone. All of our results from independent and concatenated trees and most of the species delimitation methods yield considerably higher diversity estimates than the distance based approach and morphology. Molecular data support at least 24 distinct clades within Calliphoridae in this study recovering substantial geographic variation for Lucilia eximia, Lucilia retroversa, Lucilia rica and Chloroprocta idioidea, probably indicating several cryptic species. In sum, our study demonstrates the importance employing a second nuclear marker for barcoding analyses and species delimitation of calliphorids and the power of molecular data in combination with a complete reference database to enable identification of taxonomically and geographically diverse insects of forensic importance.


2017 ◽  
Author(s):  
Sohath Z Yusseff-Vanegas ◽  
Ingi Agnarsson

Correct identification of forensically important insects, such as flies in the family Calliphoridae, is a crucial step for them to be used as evidence in legal investigations. Traditional identification based on morphology has been effective, but has some limitations when it comes to identify immature stages of certain species. DNA-barcoding, using COI, has demonstrated potential for rapid and accurate identification of Calliphoridae, however, this gene does not reliably distinguish among some recently diverged species, raising questions about its use for delimitation of species of forensic importance. To facilitate DNA based identification of Calliphoridae in the Caribbean; we developed a vouchered reference collection from across the region, and a DNA sequence database, and further added the nuclear ITS2 as a second marker to increase accuracy of identification through barcoding. We morphologically identified freshly collected specimens, did phylogenetic analyses and employed several species delimitation methods for a total of 468 individuals representing 19 described species. Our results show that combination of COI + ITS2 genes yields more accurate identification and diagnoses, and better agreement with morphological data, than the mitochondrial barcodes alone. All of our results from independent and concatenated trees and most of the species delimitation methods yield considerably higher diversity estimates than the distance based approach and morphology. Molecular data support at least 24 distinct clades within Calliphoridae in this study recovering substantial geographic variation for Lucilia eximia, Lucilia retroversa, Lucilia rica and Chloroprocta idioidea, probably indicating several cryptic species. In sum, our study demonstrates the importance employing a second nuclear marker for barcoding analyses and species delimitation of calliphorids and the power of molecular data in combination with a complete reference database to enable identification of taxonomically and geographically diverse insects of forensic importance.


2021 ◽  
Vol 307 (2) ◽  
Author(s):  
Pau Carnicero ◽  
Núria Garcia-Jacas ◽  
Llorenç Sáez ◽  
Theophanis Constantinidis ◽  
Mercè Galbany-Casals

AbstractThe eastern Mediterranean basin hosts a remarkably high plant diversity. Historical connections between currently isolated areas across the Aegean region and long-distance dispersal events have been invoked to explain current distribution patterns of species. According to most recent treatments, at least two Cymbalaria species occur in this area, Cymbalaria microcalyx and C. longipes. The former comprises several intraspecific taxa, treated at different ranks by different authors based on morphological data, evidencing the need of a taxonomic revision. Additionally, some populations of C. microcalyx show exclusive morphological characters that do not match any described taxon. Here, we aim to shed light on the systematics of eastern Mediterranean Cymbalaria and to propose a classification informed by various sources of evidence. We performed molecular phylogenetic analyses using ITS, 3’ETS, ndhF and rpl32-trnL sequences and estimated the ploidy level of some taxa performing relative genome size measures. Molecular data combined with morphology support the division of traditionally delimited C. microcalyx into C. acutiloba, C. microcalyx and C. minor, corresponding to well-delimited nrDNA lineages. Furthermore, we propose to combine C. microcalyx subsp. paradoxa at the species level. A group of specimens previously thought to belong to Cymbalaria microcalyx constitute a well-defined phylogenetic and morphological entity and are described here as a new species, Cymbalaria spetae. Cymbalaria longipes is non-monophyletic, but characterized by being glabrous and diploid, unlike other eastern species. The nrDNA data suggest at least two dispersals from the mainland to the Aegean Islands, potentially facilitated by marine regressions.


2020 ◽  
Vol 94 ◽  
Author(s):  
J. Schwelm ◽  
O. Kudlai ◽  
N.J. Smit ◽  
C. Selbach ◽  
B. Sures

Abstract Bithynids snails are a widespread group of molluscs in European freshwater systems. However, not much information is available on trematode communities from molluscs of this family. Here, we investigate the trematode diversity of Bithynia tentaculata, based on molecular and morphological data. A total of 682 snails from the rivers Lippe and Rhine in North Rhine-Westphalia, Germany, and 121 B. tentaculata from Curonian Lagoon, Lithuania were screened for infections with digeneans. In total, B. tentaculata showed a trematode prevalence of 12.9% and 14%, respectively. The phylogenetic analyses based on 55 novel sequences for 36 isolates demonstrated a high diversity of digeneans. Analyses of the molecular and morphological data revealed a species-rich trematode fauna, comprising 20 species, belonging to ten families. Interestingly, the larval trematode community of B. tentaculata shows little overlap with the well-studied trematode fauna of lymnaeids and planorbids, and some of the detected species (Echinochasmus beleocephalus and E. coaxatus) constitute first records for B. tentaculata in Central Europe. Our study revealed an abundant, diverse and distinct trematode fauna in B. tentaculata, which highlights the need for further research on this so far understudied host–parasite system. Therefore, we might currently be underestimating the ecological roles of several parasite communities of non-pulmonate snail host families in European fresh waters.


Phytotaxa ◽  
2016 ◽  
Vol 266 (2) ◽  
pp. 134 ◽  
Author(s):  
QI ZHAO ◽  
YAN-JIA HAO ◽  
JIAN-KUI LIU ◽  
KEVIN D. HYDE ◽  
YANG-YANG CUI ◽  
...  

Infundibulicybe rufa sp. nov., is described from Jiuzhaigou Biosphere Reserve, southwestern China. It is characterized by the combination of the following characters: umbilicate to slightly infundibuliform, reddish brown pileus; decurrent, cream lamellae; cylindrical stipe concolorous with the pileus surface. Molecular phylogenetic analyses using the nuclear ribosomal internal transcribed spacer (ITS) region indicates that I. rufa is closely related to I. mediterranea and I. bresadolana. A description, line drawings, phylogenetic placement and comparison with allied taxa for the new taxon are presented.


Plant Disease ◽  
2003 ◽  
Vol 87 (11) ◽  
pp. 1329-1332 ◽  
Author(s):  
J. Roux ◽  
H. Myburg ◽  
B. D. Wingfield ◽  
M. J. Wingfield

Cryphonectria cubensis is an economically important pathogen of commercial Eucalyptus spp. Differences have been reported for disease symptoms associated with Cryphonectria canker in South Africa and other parts of the world, and recent DNA-based comparisons have confirmed that the fungus in South Africa is different from that in South America and Australasia. During a disease survey in the Republic of Congo, Cryphonectria canker was identified as an important disease on Eucalyptus grandis and E. urophylla. In this study, we compared Congolese and South African isolates of C. cubensis using DNA sequence data and pathogenicity under greenhouse conditions. The β-tubulin and internal transcribed spacer (ITS) region sequences show that C. cubensis in Congo is different from the fungus in South Africa and that Congolese isolates group most closely with South American isolates. Furthermore, pathogenicity tests showed that a South African isolate was more aggressive than two Congolese isolates. We conclude that two distinct Cryphonectria spp. occur in Africa and hypothesize that the fungus in the Congo probably was introduced into Africa from South America. Both fungi are important pathogens causing disease and death of economically important plantation trees. However, they apparently have different origins and must be treated separately in terms of disease management and quarantine considerations.


Sign in / Sign up

Export Citation Format

Share Document