Dwell-time conditions for exponential stability and standard L1-gain performance of discrete-time singular switched positive systems with time-varying delays

2020 ◽  
Vol 38 ◽  
pp. 100939
Author(s):  
Shuo Li ◽  
Zhengrong Xiang ◽  
Junfeng Zhang
2012 ◽  
Vol 562-564 ◽  
pp. 2084-2087
Author(s):  
Hui Ding ◽  
Xu Yang Lou

This paper addresses stability properties of linear switched positive systems composed of continuous-time subsystems and discrete-time subsystems. Based on the common linear copositive Lyapunov functions, stability of the positive systems is discussed under arbitrary switching. Moreover, a sufficient condition on the minimum dwell time that guarantees the stability of linear switched positive systems. The dwell time analysis interprets the stability of linear switched positive systems through the distance between the eigenvector sets. Thus, an explicit relation in view of stability is obtained between the family of the involved subsystems and the set of admissible switching signals.


2013 ◽  
Vol 479-480 ◽  
pp. 983-988
Author(s):  
Jenq Der Chen ◽  
Chang Hua Lien ◽  
Ker Wei Yu ◽  
Chin Tan Lee ◽  
Ruey Shin Chen ◽  
...  

In this paper, the switching signal design to robust exponential stability for discrete-time switched systems with interval time-varying delay is considered. LMI-based conditions are proposed to guarantee the global exponential stability for such system with parametric perturbations by using a switching signal. The appropriate Lyapunov functionals are used to reduce the conservativeness of systems. Finally, a numerical example is illustrated to show the main results.


Sign in / Sign up

Export Citation Format

Share Document