New nano-sized Al2O3-BN coating 3Y-TZP ceramic composites for CAD/CAM–produced all-ceramic dental restorations. Part I. Fabrication of powders

2009 ◽  
Vol 5 (2) ◽  
pp. 232-239 ◽  
Author(s):  
Se Fei Yang ◽  
Li Qiang Yang ◽  
Zhi Hao Jin ◽  
Tian Wen Guo ◽  
Lei Wang ◽  
...  
2009 ◽  
Vol 88 (7) ◽  
pp. 673-676 ◽  
Author(s):  
J. Ebert ◽  
E. Özkol ◽  
A. Zeichner ◽  
K. Uibel ◽  
Ö. Weiss ◽  
...  

CAD/CAM milling systems provide a rapid and individual method for the manufacturing of zirconia dental restorations. However, the disadvantages of these systems include limited accuracy, possible introduction of microscopic cracks, and a waste of material due to the principle of the ‘subtractive process’. The hypothesis of this study was that these issues can be overcome by a novel generative manufacturing technique, direct inkjet printing. A tailored zirconia-based ceramic suspension with 27 vol% solid content was synthesized. The suspension was printed on a conventional, but modified, drop-on-demand inkjet printer. A cleaning unit and a drying device allowed for the build-up of dense components of the size of a posterior crown. A characteristic strength of 763 MPa and a mean fracture toughness of 6.7 MPam0.5 were determined on 3D-printed and subsequently sintered specimens. The novel technique has great potential to produce, cost-efficiently, all-ceramic dental restorations at high accuracy and with a minimum of materials consumption.


2009 ◽  
Vol 620-622 ◽  
pp. 575-578 ◽  
Author(s):  
Xin Pei Ma ◽  
Guang Xin Li ◽  
Zhi Hao Jin ◽  
Ji Hua Chen ◽  
Mao Ju Yang ◽  
...  

Glass-ceramics are especially useful for the dental restorations because of their good biocompatibility, chemical stability, aesthetic, mechanical strength and wear resistance. The aim of this work was to obtain one mica glass-ceramic, which can be easily used for rapid machining into all-ceramic tooth with computer assisted design/computer assisted manufacture (CAD/CAM) devices. In the study, on the base of low melting machinable fluorosilicic mica glass ceramics, the effects of CeO2 and Fe2O3 in SiO2-B2O3-K2O-Na2O-Li2O-Al2O3-MgO-F system on color were studied. By orthogonal experimental design, the effects of crystallized parameters on the color, three point flexural strength and machinability of the glass ceramics were obtained, and the samples were analyzed by differential thermal analysis(DTA), X-ray diffraction (XRD) and scanning electron microscopy(SEM), respectively. Experimental results showed that the glass-ceramics with color close to the tooth can be obtained by adjusting the percentage of CeO2 and Fe2O3, and the glass-ceramics crystallized at 680°C for 2h have excellent mechanical properties and machinability.


2010 ◽  
Vol 30 (1) ◽  
pp. 42-49 ◽  
Author(s):  
Yukimichi TAMAKI ◽  
Yasuhiro HOTTA ◽  
Jun KUNII ◽  
Soichi KURIYAMA ◽  
Daisuke HIGUCHI ◽  
...  

Author(s):  
W. Braue ◽  
R.W. Carpenter ◽  
D.J. Smith

Whisker and fiber reinforcement has been established as an effective toughening concept for monolithic structural ceramics to overcome limited fracture toughness and brittleness. SiC whiskers in particular combine both high strength and elastic moduli with good thermal stability and are compatible with most oxide and nonoxide matrices. As the major toughening mechanisms - crack branching, deflection and bridging - in SiC whiskenreinforced Al2O3 and Si3N41 are critically dependent on interface properties, a detailed TEM investigation was conducted on whisker/matrix interfaces in these all-ceramic- composites.In this study we present HREM images obtained at 400 kV from β-SiC/α-Al2O3 and β-SiC/β-Si3N4 interfaces, as well as preliminary analytical data. The Al2O3- base composite was hotpressed at 1830 °C/60 MPa in vacuum and the Si3N4-base material at 1725 °C/30 MPa in argon atmosphere, respectively, adding a total of 6 vt.% (Y2O3 + Al2O3) to the latter to promote densification.


Author(s):  
M. Sarikaya ◽  
J. T. Staley ◽  
I. A. Aksay

Biomimetics is an area of research in which the analysis of structures and functions of natural materials provide a source of inspiration for design and processing concepts for novel synthetic materials. Through biomimetics, it may be possible to establish structural control on a continuous length scale, resulting in superior structures able to withstand the requirements placed upon advanced materials. It is well recognized that biological systems efficiently produce complex and hierarchical structures on the molecular, micrometer, and macro scales with unique properties, and with greater structural control than is possible with synthetic materials. The dynamism of these systems allows the collection and transport of constituents; the nucleation, configuration, and growth of new structures by self-assembly; and the repair and replacement of old and damaged components. These materials include all-organic components such as spider webs and insect cuticles (Fig. 1); inorganic-organic composites, such as seashells (Fig. 2) and bones; all-ceramic composites, such as sea urchin teeth, spines, and other skeletal units (Fig. 3); and inorganic ultrafine magnetic and semiconducting particles produced by bacteria and algae, respectively (Fig. 4).


Sign in / Sign up

Export Citation Format

Share Document