Ultrasmall graphene oxide based T1 MRI contrast agent for in vitro and in vivo labeling of human mesenchymal stem cells

2018 ◽  
Vol 14 (7) ◽  
pp. 2475-2483 ◽  
Author(s):  
Mengxin Zhang ◽  
Xiaoyun Liu ◽  
Jie Huang ◽  
Lina Wang ◽  
He Shen ◽  
...  
2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Rami Tadros ◽  
Bhakti Rawal ◽  
Karen Briley-Saebo ◽  
David O’Connor ◽  
Dan Han ◽  
...  

Introduction: Mesenchymal stem cells (MSC) are being investigated in porcine abdominal aortic aneurysm (PAAA) models for their repair potential. This study uses MSCs labeled with the MRI contrast agent Ferex to non-invasively evaluate MSC migration in-vivo. Methods: MSCs from 6 pigs were isolated from bone marrow via Ficoll Paque separation and expanded in culture. Using a Lentiviral vector, MSC from all 6 pigs were transfected with green florescent protein (GFP). MSCs from 4 of these pigs were also labeled with 200μg/ml Ferex using Poly-L-Lysine and then analyzed for Ferex uptake and viability. Preservation of the MSC phenotype was confirmed using flow cytometry by detecting positive CD90 and negative CD45 and CD117. Transmission electron microscopy established that Ferex localized to lysosomes. MSCs were then injected into the adventitia of the PAAA. In-vivo MRI was performed using multiple echo gradient echo sequences. Effective transverse relaxation times (T2* values) were calculated on a pixel-by-pixel basis as a function of time post cell transplantation. Results: Ferex labeled MSCs were visible post transplantation at 4, 11, 15 and 21 days using MRI. The MRI signal void (decreased T2* values) correlated with the presence of Ferex within the PAAA. This signal loss progressively expanded circumferentially at each study interval representing cellular movement. MSC migration and localization were confirmed with GFP visualization on fluorescence microscopy and immunohistochemistry. In-vivo MRI signals also correlate with iron deposition on Perl’s stain. Conclusion: Ferex can be used as an in-vivo tracking agent of MSCs in PAAA models.


2021 ◽  
Vol 11 (3) ◽  
pp. 1165
Author(s):  
Wen-Tien Hsiao ◽  
Yi-Hong Chou ◽  
Jhong-Wei Tu ◽  
Ai-Yih Wang ◽  
Lu-Han Lai

The purpose of this study is to establish the minimal injection doses of magnetic resonance imaging (MRI) contrast agents that can achieve optimized images while improving the safety of injectable MRI drugs. Gadolinium-diethylenetriamine penta-acetic acid (Gd-DTPA) and ferucarbotran, commonly used in clinical practice, were selected and evaluated with in vitro and in vivo experiments. MRI was acquired using T1-weighted (T1W) and T2-weighted (T2W) sequences, and the results were quantitatively analyzed. For in vitro experiments, results showed that T1W and T2W images were optimal when Gd-DTPA-bisamide (2-oxoethyl) (Gd-DTPA-BMEA) and ferucarbotran were diluted to a volume percentage of 0.6% and 0.05%; all comparisons were significant differences in grayscale statistics using one-way analysis of variance (ANOVA). For in vivo experiments, the contrast agent with optimal concentration percentages determined from in vitro experiments were injected into mice with an injection volume of 100 μL, and the images of brain, heart, liver, and mesentery before and after injection were compared. The statistical results showed that the p values of both T1W and T2W were less than 0.001, which were statistically significant. Under safety considerations for MRI contrast agent injection, optimized MRI images could still be obtained after reducing the injection concentration, which can provide a reference for the safety concentrations of MRI contrast agent injection in the future.


2021 ◽  
pp. 1-11
Author(s):  
Yuzaburo Shimizu ◽  
Joy Gumin ◽  
Feng Gao ◽  
Anwar Hossain ◽  
Elizabeth J. Shpall ◽  
...  

OBJECTIVE Delta-24-RGD is an oncolytic adenovirus that is capable of replicating in and killing human glioma cells. Although intratumoral delivery of Delta-24-RGD can be effective, systemic delivery would improve its clinical application. Bone marrow–derived human mesenchymal stem cells (BM-hMSCs) obtained from healthy donors have been investigated as virus carriers. However, it is unclear whether BM-hMSCs can be derived from glioma patients previously treated with marrow-toxic chemotherapy or whether such BM-hMSCs can deliver oncolytic viruses effectively. Herein, the authors undertook a prospective clinical trial to determine the feasibility of obtaining BM-hMSCs from patients with recurrent malignant glioma who were previously exposed to marrow-toxic chemotherapy. METHODS The authors enrolled 5 consecutive patients who had been treated with radiation therapy and chemotherapy. BM aspirates were obtained from the iliac crest and were cultured to obtain BM-hMSCs. RESULTS The patient-derived BM-hMSCs (PD-BM-hMSCs) had a morphology similar to that of healthy donor–derived BM-hMSCs (HD-BM-hMSCs). Flow cytometry revealed that all 5 cell lines expressed canonical MSC surface markers. Importantly, these cultures could be made to differentiate into osteocytes, adipocytes, and chondrocytes. In all cases, the PD-BM-hMSCs homed to intracranial glioma xenografts in mice after intracarotid delivery as effectively as HD-BM-hMSCs. The PD-BM-hMSCs loaded with Delta-24-RGD (PD-BM-MSC-D24) effectively eradicated human gliomas in vitro. In in vivo studies, intravascular administration of PD-BM-MSC-D24 increased the survival of mice harboring U87MG gliomas. CONCLUSIONS The authors conclude that BM-hMSCs can be acquired from patients previously treated with marrow-toxic chemotherapy and that these PD-BM-hMSCs are effective carriers for oncolytic viruses.


2008 ◽  
Vol 0 (ja) ◽  
pp. 081201062920099
Author(s):  
YOSHIMI OHYABU ◽  
ZEENIA KAUL ◽  
TOMOKAZU YOSHIOKA ◽  
KAZUKI INOUE ◽  
SHINSUKE SAKAI ◽  
...  

2009 ◽  
Vol 185 (1) ◽  
pp. 67-75 ◽  
Author(s):  
Guizhong Liu ◽  
Sapna Vijayakumar ◽  
Luca Grumolato ◽  
Randy Arroyave ◽  
HuiFang Qiao ◽  
...  

Genetic evidence indicates that Wnt signaling is critically involved in bone homeostasis. In this study, we investigated the functions of canonical Wnts on differentiation of adult multipotent human mesenchymal stem cells (hMSCs) in vitro and in vivo. We observe differential sensitivities of hMSCs to Wnt inhibition of osteogenesis versus adipogenesis, which favors osteoblastic commitment under binary in vitro differentiation conditions. Wnt inhibition of osteogenesis is associated with decreased expression of osteoblastic transcription factors and inhibition of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase activation, which are involved in osteogenic differentiation. An hMSC subpopulation exhibits high endogenous Wnt signaling, the inhibition of which enhances osteogenic and adipogenic differentiation in vitro. In an in vivo bone formation model, high levels of Wnt signaling inhibit de novo bone formation by hMSCs. However, hMSCs with exogenous expression of Wnt1 but not stabilized β-catenin markedly stimulate bone formation by naive hMSCs, arguing for an important role of a canonical Wnt gradient in hMSC osteogenesis in vivo.


2000 ◽  
Vol 219 (1) ◽  
pp. 50-62 ◽  
Author(s):  
Donald P. Lennon ◽  
Stephen E. Haynesworth ◽  
Douglas M. Arm ◽  
Marilyn A. Baber ◽  
Arnold I. Caplan

2010 ◽  
Vol 13 (6) ◽  
pp. 1204-1214 ◽  
Author(s):  
Franz Josef Gildehaus ◽  
Florian Haasters ◽  
Inga Drosse ◽  
Erika Wagner ◽  
Christian Zach ◽  
...  

2011 ◽  
Vol 8 (5) ◽  
pp. 1750-1756 ◽  
Author(s):  
Valeria Menchise ◽  
Giuseppe Digilio ◽  
Eliana Gianolio ◽  
Evelina Cittadino ◽  
Valeria Catanzaro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document