scholarly journals Label-free characterization of exosome via surface enhanced Raman spectroscopy for the early detection of pancreatic cancer

2019 ◽  
Vol 16 ◽  
pp. 88-96 ◽  
Author(s):  
Joseph Carmicheal ◽  
Chihiro Hayashi ◽  
Xi Huang ◽  
Lei Liu ◽  
Yao Lu ◽  
...  
2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Xiaowei Cao ◽  
Zhenyu Wang ◽  
Liyan Bi ◽  
Jie Zheng

Surface-enhanced Raman spectroscopy (SERS) is a good candidate for the development of fast and easy-to-use diagnostic tools, possibly used on serum in screening tests. In this study, a potential label-free serum test based on SERS spectroscopy was developed to analyze human serum for the diagnosis of the non-small cell lung cancer (NSCLC). We firstly synthesized novel highly branched gold nanoparticles (HGNPs) at high yield through a one-step reduction of HAuCl4 with dopamine hydrochloride at 60°C. Then, HGNP substrates with good reproducibility, uniformity, and high SERS effect were fabricated by the electrostatically assisted (3-aminopropyl) triethoxysilane-(APTES-) functionalized silicon wafer surface-sedimentary self-assembly method. Using as-prepared HGNP substrates as a high-performance sensing platform, SERS spectral data of serum obtained from healthy subjects, lung adenocarcinoma patients, lung squamous carcinoma patients, and large cell lung cancer patients were collected. The difference spectra among different types of NSCLC were compared, and analysis result revealed their intrinsic difference in types and contents of nucleic acids, proteins, carbohydrates, amino acids, and lipids. SERS spectra were analyzed by principal component analysis (PCA), which was able to distinguish different types of NSCLC. Considering its time efficiency, being label-free, and sensitivity, SERS based on HGNP substrates is very promising for mass screening NSCLC and plays an important role in the detection and prevention of other diseases.


2018 ◽  
Vol 90 (21) ◽  
pp. 12670-12677 ◽  
Author(s):  
Stefano Fornasaro ◽  
Alois Bonifacio ◽  
Elena Marangon ◽  
Mauro Buzzo ◽  
Giuseppe Toffoli ◽  
...  

2017 ◽  
Vol 8 ◽  
pp. 2492-2503 ◽  
Author(s):  
Somi Kang ◽  
Sean E Lehman ◽  
Matthew V Schulmerich ◽  
An-Phong Le ◽  
Tae-woo Lee ◽  
...  

Herein we describe the fabrication and characterization of Ag and Au bimetallic plasmonic crystals as a system that exhibits improved capabilities for quantitative, bulk refractive index (RI) sensing and surface-enhanced Raman spectroscopy (SERS) as compared to monometallic plasmonic crystals of similar form. The sensing optics, which are bimetallic plasmonic crystals consisting of sequential nanoscale layers of Ag coated by Au, are chemically stable and useful for quantitative, multispectral, refractive index and spectroscopic chemical sensing. Compared to previously reported homometallic devices, the results presented herein illustrate improvements in performance that stem from the distinctive plasmonic features and strong localized electric fields produced by the Ag and Au layers, which are optimized in terms of metal thickness and geometric features. Finite-difference time-domain (FDTD) simulations theoretically verify the nature of the multimode plasmonic resonances generated by the devices and allow for a better understanding of the enhancements in multispectral refractive index and SERS-based sensing. Taken together, these results demonstrate a robust and potentially useful new platform for chemical/spectroscopic sensing.


Nanomedicine ◽  
2021 ◽  
Vol 16 (24) ◽  
pp. 2175-2188
Author(s):  
Stacy Grieve ◽  
Nagaprasad Puvvada ◽  
Angkoon Phinyomark ◽  
Kevin Russell ◽  
Alli Murugesan ◽  
...  

Aim: Monitoring minimal residual disease remains a challenge to the effective medical management of hematological malignancies; yet surface-enhanced Raman spectroscopy (SERS) has emerged as a potential clinical tool to do so. Materials & methods: We developed a cell-free, label-free SERS approach using gold nanoparticles (nanoSERS) to classify hematological malignancies referenced against two control cohorts: healthy and noncancer cardiovascular disease. A predictive model was built using machine-learning algorithms to incorporate disease burden scores for patients under standard treatment upon. Results: Linear- and quadratic-discriminant analysis distinguished three cohorts with 69.8 and 71.4% accuracies, respectively. A predictive nanoSERS model correlated (MSE = 1.6) with established clinical parameters. Conclusion: This study offers a proof-of-concept for the noninvasive monitoring of disease progression, highlighting the potential to incorporate nanoSERS into translational medicine.


Proceedings ◽  
2019 ◽  
Vol 27 (1) ◽  
pp. 14
Author(s):  
Mario D’Acunto

In the last decade, surface-enhanced Raman spectroscopy (SERS) met increasing interest in the detection of chemical and biological agents due to its rapid performance and ultra-sensitive features. SERS is a combination of Raman spectroscopy and nanotechnology; it includes the advantages of Raman spectroscopy, providing rapid spectra collection, small sample sizes, and characteristic spectral fingerprints for specific analytes. In this paper, we detected label-free SERS signals for arbitrarily configurations of dimers, trimers, etc., composed of gold nanoshells (AuNSs) and applied to the mapping of osteosarcoma intracellular components.


Sign in / Sign up

Export Citation Format

Share Document