Glycoprotein VI (GPVI)-functionalized nanoparticles targeting arterial injury sites under physiological flow

2020 ◽  
Vol 29 ◽  
pp. 102274
Author(s):  
Moran Levi ◽  
Mark Epshtein ◽  
Tatsiana Castor ◽  
Meinrad Gawaz ◽  
Netanel Korin
Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 417-417 ◽  
Author(s):  
Li Zhu ◽  
Hong Jiang ◽  
Atsushi Kumanogoh ◽  
Hitoshi Kikutani ◽  
Lawrence F. Brass

Abstract Semaphorins are a large family of cell surface molecules best known for their ability to mediate communication between cells during neural development. We have recently shown that human platelets express the semaphorin family member, sema4D, and both of its known receptors, CD72 and plexin-B1 (Zhu, et al, PNAS, 2007). We have also shown that sema4D(−/−) mice have an impaired response to arterial injury in vivo and a selective defect in collagen- and convulxin-induced platelet aggregation in vitro. In the present studies we have sought the molecular basis for these defects, focusing on events downstream of glycoprotein VI (GPVI), which serves as a receptor for both collagen and convulxin. In normal platelets, GPVI signaling leads to the phosphorylation and activation of phospholipase Cγ2 (PLCγ2) through the formation of a signaling complex that includes SLP-76 and LAT. This complex is activated when GPVI-associated FcRγ is phosphorylated, allowing the tyrosine kinase, Syk, to bind. PLCγ2 activation results in phosphoinositide hydrolysis, an IP3-mediated increase in cytosolic Ca++, and activation of additional kinases, such as Akt. In theory, the absence of sema4D could affect any of these steps and by doing so impair collagen-induced platelet aggregation. Working backwards through the GPVI pathway, our results showed that compared to platelets from matched WT mice, sema4D(−/−) platelets have 1) a rightward-shift in the dose/response curve for collagen-induced Akt phosphorylation, 2) a 37% smaller increase in cytosolic Ca++, and 3) a 43% smaller increase in PLCγ2 phosphorylation. However, we found no defect in collagen-induced FcRγ phosphorylation, which is the earliest event in GPVI signaling. The defect in PLCγ2 phosphorylation was not limited to mouse platelets, but was also observed when human platelets were stimulated with collagen in the presence of an antibody directed towards the sema4D extracellular domain. Taken together, these results show that sema4D is needed for optimal activation of PLCγ2 by collagen downstream of the GPVI/FcRγ complex. Sema4D is believed to act in part through contact-dependent binding of sema4D to its receptors, CD72 and plexin-B1. Since these studies were performed under conditions in which platelet:platelet contacts can occur, the observed defect in collagen and convulxin responses could be due to impaired signaling by either of these receptors or, in theory, by retrograde signaling via sema4D. One candidate mechanism involves a regulatory complex between CD72 and the tyrosine phosphatase, SHP-1, which we have shown to occur in resting human platelets and to be lost when platelets are activated by agonists or stimulated by soluble sema4D. In theory, sema4D-dependent loss of the CD72/SHP-1 complex allows SHP-1 to relax into an inactive conformation, promoting protein tyrosine phosphorylation, which would not occur when sema4D is absent or blocked.


2002 ◽  
Vol 197 (1) ◽  
pp. 41-49 ◽  
Author(s):  
Steffen Massberg ◽  
Meinrad Gawaz ◽  
Sabine Grüner ◽  
Valerie Schulte ◽  
Ildiko Konrad ◽  
...  

Platelet adhesion and aggregation at sites of vascular injury is crucial for hemostasis but may lead to arterial occlusion in the setting of atherosclerosis and precipitate diseases such as myocardial infarction. A current hypothesis suggests that platelet glycoprotein (GP) Ib interaction with von Willebrand factor recruits flowing platelets to the injured vessel wall, where subendothelial fibrillar collagens support their firm adhesion and activation. However, so far this hypothesis has not been tested in vivo. Here, we demonstrate by intravital fluorescence microscopy of the mouse carotid artery that inhibition or absence of the major platelet collagen receptor, GPVI, abolishes platelet–vessel wall interactions after endothelial denudation. Unexpectedly, inhibition of GPVI by the monoclonal antibody JAQ1 reduced platelet tethering to the subendothelium by ∼89%. In addition, stable arrest and aggregation of platelets was virtually abolished under these conditions. Using different models of arterial injury, the strict requirement for GPVI in these processes was confirmed in GPVI-deficient mice, where platelets also failed to adhere and aggregate on the damaged vessel wall. These findings reveal an unexpected role of GPVI in the initiation of platelet attachment at sites of vascular injury and unequivocally identify platelet–collagen interactions (via GPVI) as the major determinant of arterial thrombus formation.


Author(s):  
S. K. Pena ◽  
C. B. Taylor ◽  
J. Hill ◽  
J. Safarik

Introduction: Oxidized cholesterol derivatives have been demonstrated in various cell cultures to be very potent inhibitors of 3-hvdroxy-3- methylglutaryl Coenzyme A reductase which is a principle regulator of cholesterol biosynthesis in the cell. The cholesterol content in the cells exposed to oxidized cholesterol was found to be markedly decreased. In aortic smooth muscle cells, the potency of this effect was closely related to the cytotoxicity of each derivative. Furthermore, due to the similarity of their molecular structure to that of cholesterol, these oxidized cholesterol derivatives might insert themselves into the cell membrane, alter membrane structure and function and eventually cause cell death. Arterial injury has been shown to be the initial event of atherosclerosis.


1997 ◽  
Vol 77 (04) ◽  
pp. 783-788 ◽  
Author(s):  
Paolo Golino ◽  
Giuseppe Ambrosio ◽  
Massimo Ragni ◽  
Plinio Cirillo ◽  
Nicolino Esposito ◽  
...  

SummaryRestenosis following coronary angioplasty is thought to result from migration and proliferation of medial smooth muscle cells. However, the factors that initiate this proliferation are still unknown. In a rabbit model of carotid artery injury, we tested the hypothesis that activated platelets and leucocytes might contribute to the development of neointimal hyperplasia. Following arterial injury, rabbits received either no treatment, R15.7, a monoclonal antibody against the leucocyte CD ll/CD 18 adhesion complex, aurintricarboxylic acid (ATA), a sub stance that inhibits platelet glycoprotein Ib-von Willebrand factor interaction, or the combination of R15.7 and ATA. After 21 days, the extent of neointimal hyperplasia was evaluated by planimetry on histological arterial sections. The area of neointima averaged 0.51 ±0.07 mm2 in control animals and it was significantly reduced by administrationof either R15.7 or ATA alone to 0.12 ± 0.05 and 0.20 ±0.01 mm2, respectively (p <0.05 vs controls for both groups). The animals that received the combination of R15.7 and ATA showed a further reduction in neointimal hyperplasia, as compared to animals that received ATA alone (p <0.05 vs ATA alone). These data indicate that platelets and leucocytes play animportant role in the pathophysi ology of neointimal hyperplasia in this experimental model. Interven tions that reduce platelet and leucocyte adhesion to vessel wall might have beneficial effects in reducing restenosis following coronary angioplasty.


1979 ◽  
Vol 42 (05) ◽  
pp. 1503-1507 ◽  
Author(s):  
G D O Lowe ◽  
Maureen M Drummond ◽  
Jane L H C Third ◽  
W F Bremner ◽  
C D Forbes ◽  
...  

SummaryPlasma fibrinogen and platelet-aggregates (method of Wu and Hoak) were measured in 21 patients with familial Type II hyperlipoproteinaemia and 21 matched control subjects. Patients with hyperlipoproteinaemia had increased levels of fibrinogen and platelet- aggregates (p<0.01). Young patients with hyperlipoproteinaemia had prematurely high fibrinogen levels, and the normal rise in fibrinogen during adult life was abolished. There were no statistically significant correlations within the patient group between fibrinogen, platelet-aggregates, and plasma lipids. High fibrinogen and platelet-aggregate levels may play a part in the development of the premature arterial disease associated with Type II hyperlipoproteinaemia, or may be markers of arterial injury.


2018 ◽  
Vol 14 (6) ◽  
pp. 481-502 ◽  
Author(s):  
Anber Saleem ◽  
Sadia Waheed ◽  
Sohail Nadeem

Sign in / Sign up

Export Citation Format

Share Document