Faculty Opinions recommendation of Cbl-b is a novel physiologic regulator of glycoprotein VI-dependent platelet activation.

Author(s):  
Xiaoping Du ◽  
Kelly O'Brien
Blood ◽  
2012 ◽  
Vol 119 (15) ◽  
pp. 3613-3621 ◽  
Author(s):  
C. Y. Eleanor Fung ◽  
Sarah Jones ◽  
Adwoa Ntrakwah ◽  
Khalid M. Naseem ◽  
Richard W. Farndale ◽  
...  

Abstract Inhibition of Ca2+ mobilization by cyclic nucleotides is central to the mechanism whereby endothelial-derived prostacyclin and nitric oxide limit platelet activation in the intact circulation. However, we show that ∼ 50% of the Ca2+ response after stimulation of glycoprotein VI (GPVI) by collagen, or of Toll-like 2/1 receptors by Pam3Cys-Ser-(Lys)4 (Pam3CSK4), is resistant to prostacyclin. At low agonist concentrations, the prostacyclin-resistant Ca2+ response was predominantly because of P2X1 receptors activated by ATP release via a phospholipase-C–coupled secretory pathway requiring both protein kinase C and cytosolic Ca2+ elevation. At higher agonist concentrations, an additional pathway was observed because of intracellular Ca2+ release that also depended on activation of phospholipase C and, for TLR 2/1, PI3-kinase. Secondary activation of P2X1-dependent Ca2+ influx also persisted in the presence of nitric oxide, delivered from spermine NONOate, or increased ectonucleotidase levels (apyrase). Surprisingly, apyrase was more effective than prostacyclin and NO at limiting secondary P2X1 activation. Dilution of platelets reduced the average extracellular ATP level without affecting the percentage contribution of P2X1 receptors to collagen-evoked Ca2+ responses, indicating a highly efficient activation mechanism by local ATP. In conclusion, platelets possess inhibitor-resistant Ca2+ mobilization pathways, including P2X1 receptors, that may be particularly important during early thrombotic or immune-dependent platelet activation.


2013 ◽  
Vol 305 (12) ◽  
pp. C1230-C1239 ◽  
Author(s):  
Joseph E. Aslan ◽  
Kevin G. Phillips ◽  
Laura D. Healy ◽  
Asako Itakura ◽  
Jiaqing Pang ◽  
...  

The tubulin cytoskeleton plays a key role in maintaining the characteristic quiescent discoid shape of resting platelets. Upon activation, platelets undergo a dramatic change in shape; however, little is known of how the microtubule system contributes to regulating platelet shape and function. Here we investigated the role of the covalent modification of α-tubulin by acetylation in the regulation of platelet physiology during activation. Superresolution microscopy analysis of the platelet tubulin cytoskeleton showed that the marginal band together with an interconnected web of finer tubulin structures collapsed upon platelet activation with the glycoprotein VI (GPVI)-agonist collagen-related peptide (CRP). Western blot analysis revealed that α-tubulin was acetylated in resting platelets and deacetylated during platelet activation. Tubacin, a specific inhibitor of the tubulin deacetylase HDAC6, prevented tubulin deacetylation upon platelet activation with CRP. Inhibition of HDAC6 upregulated tubulin acetylation and disrupted the organization of the platelet microtubule marginal band without significantly affecting platelet volume changes in response to CRP stimulation. HDAC6 inhibitors also inhibited platelet aggregation in response to CRP and blocked platelet signaling events upstream of platelet Rho GTPase activation. Together, these findings support a role for acetylation signaling in controlling the resting structure of the platelet tubulin marginal band as well as in the coordination of signaling systems that drive platelet cytoskeletal changes and aggregation.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Michael K Delaney ◽  
Kyungho Kim ◽  
Brian Estevez ◽  
Aleksandra Stojanovic-Terpo ◽  
Bo Shen ◽  
...  

Objective: Reactive oxygen species (ROS) generated from activated platelets is known to regulate platelet activation. However, it remains unclear whether and how different isoforms of nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) oxidases (NOXs) play roles in different platelet activation pathways. Here we investigated the role of NOX1 and NOX2 in different platelet activation pathways using NOX1 and NOX2 knockout mice. Approach and Results: NOX1-/- platelets showed selective defects in G protein coupled receptor (GPCR)-mediated platelet activation induced by thrombin, protease-activated receptor 4 agonist peptide (PAR4AP) and thromboxane A2 analog U46619, but was not affected in platelet activation induced by collagen-related peptide (CRP), a glycoprotein VI (GPVI) agonist. In contrast, NOX2-/- platelets showed potent inhibition of CRP-induced platelet activation, and also showed partial inhibition of thrombin-induced platelet aggregation and secretion. Consistently, production of reactive oxygen species (ROS) was inhibited in NOX1-/- platelets stimulated with thrombin, but not CRP, whereas NOX2-/- platelets showed reduced ROS generation induced by CRP or thrombin. Interestingly, laser-induced arterial thrombosis was impaired in NOX2-/- mice, and in thrombocytopenic mice transfused with NOX2-/- platelets, suggesting an important role for NOX2-dependent platelet ROS production in the laser-induced injury model of thrombosis. Conclusions: NOX1 and NOX2 play differential roles in different platelet activation pathways: NOX1 mediates GPCR-mediated ROS production and platelet activation, whereas NOX2 plays a general role in GPVI- and GPCR-induced ROS production and platelet activation in vitro , and in laser-induced thrombosis in vivo .


2019 ◽  
Vol 119 (12) ◽  
pp. 2005-2013
Author(s):  
Yaqiu Sang ◽  
Dana Huskens ◽  
Kanin Wichapong ◽  
Bas de Laat ◽  
Gerry A. F. Nicolaes ◽  
...  

AbstractSynthetic cross-linked collagen-related peptide (CRP-XL) is a glycoprotein VI (GPVI) receptor activator for platelet activation. This triple helical peptide, widely used in platelet function tests, is synthesized and cross-linked through cysteine residues at its N-terminus and C-terminus. Currently, there is only one laboratory, which is capable to produce this valuable peptide for clinical applications. In an attempt to provide a standardized alternative for CRP-XL, we developed a synthetic triple helical collagen peptide (STH-CP) with the same primary sequence as CRP-XL (GPC-(GPO)10-GPCG-amide)3, which was both on the C-terminus and on the N-terminus fixed on a scaffold with a binding side for each of the three peptides. The performance of STH-CP on platelet function was studied using flow cytometry and compared with CRP-XL. We found that platelet activation pattern in response to STH-CP and CRP-XL is similar, although the STH-CP requires sixfold higher concentrations to activate platelets to the same state. The intra-assay percent coefficient of variation of STH-CP and CRP-XL were both < 5% and the interindividual variation measured in 118 individuals for both peptides was around 23 and 21% for αIIbβ3 activation and P-selectin expression, respectively. The STH-CP in ready-to-use reaction mix has lower variation than CRP-XL over 1-year storage. In reference values and seasonal variation study, the platelet activation response showed a strong correlation between STH-CP and CRP-XL.Our findings show that this new STH-CP is a stable and potent platelet GPVI agonist which can induce the same reproducible platelet activation as CRP-XL and that STH-CP can be considered as a good alternative for CRP-XL.


2000 ◽  
Vol 275 (37) ◽  
pp. 28526-28531 ◽  
Author(s):  
Jean-Max Pasquet ◽  
Lynn Quek ◽  
Sophie Pasquet ◽  
Alastair Poole ◽  
James R. Matthews ◽  
...  

2003 ◽  
Vol 89 (06) ◽  
pp. 996-1003 ◽  
Author(s):  
Jun Mizuguchi ◽  
Sachiko Kawashima ◽  
Michiko Nagamatsu ◽  
Yoshiki Miura ◽  
Tomohiro Nakagaki ◽  
...  

SummaryThe newly identified platelet collagen receptor glycoprotein VI binds to fibrous collagen, inducing platelet activation. Several antibodies against GPVI have been reported, including a patient’s auto-antibodies, that activates platelets through their ability to crosslink this glycoprotein. We have developed a monoclonal antibody (mAb) against GPVI using the recombinant extracellular domain of GPVI as an antigen. This antibody, mAb 204-11, induced platelet aggregation and tyrosine phosphorylation of proteins similar to those induced by GPVI-reactive proteins, collagen and convulxin. Its interaction with GPVI was analyzed by measuring the effect of the antibody on GPVI binding to collagen using a dimeric form of recombinant GPVI, GPVI-Fc2. MAb 204-11 inhibited the binding of GPVI-Fc2 to fibrous collagen particles, but enhanced the GPVI binding to immobilized collagen, suggesting that the antibody binds to a region near the collagen binding site of GPVI. MAb 204-11 also inhibited the GPVI binding to convulxin at a low concentration, but not completely. Since mAb 204-11 reacts specifically with GPVI and is applicable for immunoblotting and immunoprecipitation, this antibody would be useful for studies on GPVI.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1508-1508 ◽  
Author(s):  
Shawn M. Jobe ◽  
Katina M. Wilson ◽  
Lori Leo ◽  
Jeffery D. Molkentin ◽  
Steven R. Lentz ◽  
...  

Abstract Dual stimulation of platelets with thrombin and collagen results in the formation of a unique subpopulation of highly activated platelets. Characteristics of the highly activated platelet subpopulation includeincreased surface retention of procoagulant alpha granule proteins,high-level phosphatidylserine (PS) externalization, andmodulation of the fibrinogen receptor αIIbβ3 as evidenced by their decreased recognition by antibodies to activated αIIbβ3 such as PAC-1 and JON/A. Formation of the highly activated platelet subpopulation is closely correlated with a rapid loss of mitochondrial transmembrane potential (ΔΨm), a marker of MPTP formation. To test whether formation of the MPTP might regulate the development of the highly activated platelet subpopulation, platelet activation responses were examined in the presence of inhibitors and activators of MPTP formation. Cyclosporine, an inhibitor of MPTP formation, inhibited both PS externalization and αIIbβ3 modulation following dual stimulation with thrombin and the glycoprotein VI agonist convulxin (58 ± 4% vs. 9 ± 3%, p<0.01). Conversely, thrombin stimulation of platelets in the presence of H2O2 (100μM), an MPTP activator, increased PS externalization and αIIbβ3 modulation relative to platelets stimulated with thrombin alone (11 ± 3% vs. 48 ± 6%, p<0.05). Platelet activation responses were examined in cyclophilin D null (CypD −/−) mice, which have marked impairment of MPTP formation. Following dual agonist stimulation with thrombin and convulxin, both αIIbβ3 modulation and platelet PS externalization were significantly abrogated in CypD −/− platelets relative to wild type (7 ± 1% vs. 69 ± 1%, p<0.01). Alpha granule release, however, was unaffected in the absence of CypD. In vitro tests of platelet function similarly demonstrated that CypD −/− platelets had marked impairment of platelet prothrombinase activity relative to wild-type platelets after stimulation with thrombin and convulxin, but normal platelet aggregation responses. We then tested the hypothesis that CypD −/− mice would have an altered thrombotic response to arterial injury. Following photochemical injury of the carotid artery endothelium, a stable occlusive thrombus formed more rapidly in CypD −/− than in wild-type mice (16 ± 2 vs. 32 ± 7 min, p<0.05). Tail-bleeding time was unaffected. These results strongly implicate cyclophilin D and the MPTP as critical regulators of the subset of platelet activation responses occurring in the highly activated platelet subpopulation and suggest that activation of this novel platelet mitochondrial signaling pathway might play an important role in the regulation of the thrombotic response in vivo.


PLoS ONE ◽  
2017 ◽  
Vol 12 (11) ◽  
pp. e0188027 ◽  
Author(s):  
John R. Stack ◽  
Anne Madigan ◽  
Laura Helbert ◽  
Eimear Dunne ◽  
Elizabeth E. Gardiner ◽  
...  

Blood ◽  
2010 ◽  
Vol 115 (20) ◽  
pp. 4102-4110 ◽  
Author(s):  
Christian Schulz ◽  
Nina V. Leuschen ◽  
Thomas Fröhlich ◽  
Michael Lorenz ◽  
Susanne Pfeiler ◽  
...  

Abstract Platelets play a key role in hemostasis and various diseases including arterial thrombosis. Glycoprotein VI (GPVI) mediates adhesion to collagen structures exposed at sites of vascular injury and subsequent platelet activation. We determined the effects of specific activation of GPVI on the human platelet proteome. Isolated human platelets were stimulated with an activating monoclonal antibody specific for GPVI. Platelet proteins were analyzed by 2-dimensional difference gel electrophoresis (2D-DIGE) and mass spectrometry. We identified 8 differentially abundant proteins associated with cell signaling, metabolism, organization and rearrangement of the cytoskeleton, and membrane trafficking. Differentially abundant proteins included aldose reductase (AR), beta-centractin, charged multivesicular body protein 3, Src substrate cortactin, ERp57, and pleckstrin. Importantly, GPVI-modulated protein abundance was functionally relevant. Correspondingly, AR enzyme activity significantly increased upon GPVI activation and inhibition of AR resulted in reduced platelet aggregation. Furthermore, ERp57 was released upon ligation of platelet GPVI and increased the activity of tissue factor, a major initiator of blood coagulation. In summary, GPVI activation results in differential changes in abundance of platelet proteins, including AR and ERp57, which support platelet aggregation and platelet-dependent coagulation. These results provide further insight into the mechanisms that underlie platelet activation through the GPVI receptor and may help to identify novel pharmacologic targets.


Sign in / Sign up

Export Citation Format

Share Document