Integration of a porous wood-based triboelectric nanogenerator and gas sensor for real-time wireless food-quality assessment

Nano Energy ◽  
2021 ◽  
Vol 83 ◽  
pp. 105833 ◽  
Author(s):  
Chenchen Cai ◽  
Jilong Mo ◽  
Yanxu Lu ◽  
Ni Zhang ◽  
Zhengyang Wu ◽  
...  
2020 ◽  
pp. 1-1
Author(s):  
Kaiyuan Zheng ◽  
Chuantao Zheng ◽  
Haipeng Zhang ◽  
Junhao Li ◽  
Zidi Liu ◽  
...  

Author(s):  
Haiwei Liu ◽  
Jun Dong ◽  
Hongyu Zhou ◽  
Xiude Yang ◽  
Cunyun Xu ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Mojtaba Akbari ◽  
Jay Carriere ◽  
Tyler Meyer ◽  
Ron Sloboda ◽  
Siraj Husain ◽  
...  

During an ultrasound (US) scan, the sonographer is in close contact with the patient, which puts them at risk of COVID-19 transmission. In this paper, we propose a robot-assisted system that automatically scans tissue, increasing sonographer/patient distance and decreasing contact duration between them. This method is developed as a quick response to the COVID-19 pandemic. It considers the preferences of the sonographers in terms of how US scanning is done and can be trained quickly for different applications. Our proposed system automatically scans the tissue using a dexterous robot arm that holds US probe. The system assesses the quality of the acquired US images in real-time. This US image feedback will be used to automatically adjust the US probe contact force based on the quality of the image frame. The quality assessment algorithm is based on three US image features: correlation, compression and noise characteristics. These US image features are input to the SVM classifier, and the robot arm will adjust the US scanning force based on the SVM output. The proposed system enables the sonographer to maintain a distance from the patient because the sonographer does not have to be holding the probe and pressing against the patient's body for any prolonged time. The SVM was trained using bovine and porcine biological tissue, the system was then tested experimentally on plastisol phantom tissue. The result of the experiments shows us that our proposed quality assessment algorithm successfully maintains US image quality and is fast enough for use in a robotic control loop.


Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2322
Author(s):  
Xiaofei Ma ◽  
Xuan Liu ◽  
Xinxing Li ◽  
Yunfei Ma

With the rapid development of the Internet of Things (IoTs), big data analytics has been widely used in the sport field. In this paper, a light-weight, self-powered sensor based on a triboelectric nanogenerator for big data analytics in sports has been demonstrated. The weight of each sensing unit is ~0.4 g. The friction material consists of polyaniline (PANI) and polytetrafluoroethylene (PTFE). Based on the triboelectric nanogenerator (TENG), the device can convert small amounts of mechanical energy into the electrical signal, which contains information about the hitting position and hitting velocity of table tennis balls. By collecting data from daily table tennis training in real time, the personalized training program can be adjusted. A practical application has been exhibited for collecting table tennis information in real time and, according to these data, coaches can develop personalized training for an amateur to enhance the ability of hand control, which can improve their table tennis skills. This work opens up a new direction in intelligent athletic facilities and big data analytics.


2022 ◽  
Vol 12 ◽  
Author(s):  
Silvia Seoni ◽  
Simeon Beeckman ◽  
Yanlu Li ◽  
Soren Aasmul ◽  
Umberto Morbiducci ◽  
...  

Background: Laser-Doppler Vibrometry (LDV) is a laser-based technique that allows measuring the motion of moving targets with high spatial and temporal resolution. To demonstrate its use for the measurement of carotid-femoral pulse wave velocity, a prototype system was employed in a clinical feasibility study. Data were acquired for analysis without prior quality control. Real-time application, however, will require a real-time assessment of signal quality. In this study, we (1) use template matching and matrix profile for assessing the quality of these previously acquired signals; (2) analyze the nature and achievable quality of acquired signals at the carotid and femoral measuring site; (3) explore models for automated classification of signal quality.Methods: Laser-Doppler Vibrometry data were acquired in 100 subjects (50M/50F) and consisted of 4–5 sequences of 20-s recordings of skin displacement, differentiated two times to yield acceleration. Each recording consisted of data from 12 laser beams, yielding 410 carotid-femoral and 407 carotid-carotid recordings. Data quality was visually assessed on a 1–5 scale, and a subset of best quality data was used to construct an acceleration template for both measuring sites. The time-varying cross-correlation of the acceleration signals with the template was computed. A quality metric constructed on several features of this template matching was derived. Next, the matrix-profile technique was applied to identify recurring features in the measured time series and derived a similar quality metric. The statistical distribution of the metrics, and their correlates with basic clinical data were assessed. Finally, logistic-regression-based classifiers were developed and their ability to automatically classify LDV-signal quality was assessed.Results: Automated quality metrics correlated well with visual scores. Signal quality was negatively correlated with BMI for femoral recordings but not for carotid recordings. Logistic regression models based on both methods yielded an accuracy of minimally 80% for our carotid and femoral recording data, reaching 87% for the femoral data.Conclusion: Both template matching and matrix profile were found suitable methods for automated grading of LDV signal quality and were able to generate a quality metric that was on par with the signal quality assessment of the expert. The classifiers, developed with both quality metrics, showed their potential for future real-time implementation.


2008 ◽  
Vol 15 (3-4) ◽  
pp. 299-306 ◽  
Author(s):  
Tadeusz Uhl ◽  
Maciej Petko ◽  
Grzegorz Karpiel ◽  
Andrzej Klepka

In this paper the recursive method for modal parameters estimation is formulated and verified. Formulated algorithms are implemented in the FPGA electronic chip. As a result, the modal parameters and confidence bounds for the modal parameters are obtained in real time. The algorithms and their implementations are tested on laboratory test rig data and applied to – flight modal analysis of an airframe structure.


Sign in / Sign up

Export Citation Format

Share Document