scholarly journals Saccharification of pretreated wheat straw and corn stover using cellulolytic enzymes from Trichoderma viride and Aspergillus niger

2009 ◽  
Vol 25 ◽  
pp. S128
Author(s):  
T. Vintila ◽  
M. Dragomirescu ◽  
R. Vintila ◽  
V. Croitoriu
2015 ◽  
Vol 1763 ◽  
Author(s):  
L. Toscano-Palomar ◽  
G. Montero-Alpirez ◽  
M. Stilianova-Stoytcheva ◽  
E. Vertiz-Pelaez ◽  
y E. Romero Uscanga

ABSTRACTExtended research has been developed in the use of wheat straw (WS) as biomass for the production of biofuels (bioethanol), including the processes of degradation of cellulose by enzymatic systems. For centuries, Cellulose has been used by man; however, its enormous potential as a renewable energy source was recognized only after the discovery of cellulose degrading enzymes (cellulases). A wide variety of microorganisms can produce cellulolytic enzymes under appropriate culture conditions and among these microorganisms are filamentous fungi of the genera Trichoderma, Aspergillus, Penicillium and Fusarium. The purpose of this study was to produce cellulase enzyme from previously isolated and characterized filamentous fungi. Cellulytic fungi belonged toAspergillus flavus, Aspergillus niger, Aspergillus oryzae, Penicillium chrysogenum, Penicillium sp.,andTrichoderma harzianum.All these strains were preserved by lyophilization and also kept in sterile media (sand and soil) at 4 °C. The production of cellulases by submerged fermentation was performed in a Mandels mineral medium. The nitrogen sources were urea and ammonium sulfate. Glucose alone was used in the pre-inoculum, and dried and ground wheat straw was used in the fermentation as carbon sources. Subcultures of spore suspensions were incubated with orbital stirring (120 rpm) at 30 °C for 48 hours and used as inoculum for submerged fermentation with wheat straw as substrate in mineral medium with an initial pH of 5. Activity cellulase was determined by the method of 3,5-dinitrosalicylic acid (DNS). The results showed that wheat straw have potential for use as a substrate in the production of cellulases.Aspergillus nigershowed the highest enzymatic activity from the cellulase produced 0.051 FPU (filter paper units) after 96 hours of fermentation.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Valliappan Karuppiah ◽  
Lu Zhixiang ◽  
Hongyi Liu ◽  
Murugappan Vallikkannu ◽  
Jie Chen

Abstract Background Retention of agricultural bio-mass residues without proper treatment could affect the subsequent plant growth. In the present investigation, the co-cultivation of genetically engineered T. asperellum and B. amyloliquefaciens has been employed for multiple benefits including the enrichment of lignocellulose biodegradation, plant growth, defense potential and disease resistance. Results The Vel1 gene predominantly regulates the secondary metabolites, sexual and asexual development as well as cellulases and polysaccharide hydrolases productions. Overexpression mutant of the Trichoderma asperellum Vel1 locus (TA OE-Vel1) enhanced the activity of FPAase, CMCase, PNPCase, PNPGase, xylanase I, and xylanase II through the regulation of transcription regulating factors and the activation of cellulase and xylanase encoding genes. Further, these genes were induced upon co-cultivation with Bacillus amyloliquefaciens (BA). The co-culture of TA OE-Vel1 + BA produced the best composition of enzymes and the highest biomass hydrolysis yield of 89.56 ± 0.61%. The co-culture of TA OE-Vel1 + BA increased the corn stover degradation by the secretion of cellulolytic enzymes and maintained the C/N ratio of the corn stover amended soil. Moreover, the TA OE-Vel1 + BA increased the maize plant growth, expression of defense gene and disease resistance against Fusarium verticillioides and Cohilohorus herostrophus. Conclusion The co-cultivation of genetically engineered T. asperellum and B. amyloliquefaciens could be utilized as a profound and meaningful technique for the retention of agro residues and subsequent plant growth.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2527
Author(s):  
Zahra Azzouz ◽  
Azzeddine Bettache ◽  
Nawel Boucherba ◽  
Alicia Prieto ◽  
Maria Jesus Martinez ◽  
...  

Plant biomass constitutes the main source of renewable carbon on the planet. Its valorization has traditionally been focused on the use of cellulose, although hemicellulose is the second most abundant group of polysaccharides on Earth. The main enzymes involved in plant biomass degradation are glycosyl hydrolases, and filamentous fungi are good producers of these enzymes. In this study, a new strain of Aspergillus niger was used for hemicellulase production under solid-state fermentation using wheat straw as single-carbon source. Physicochemical parameters for the production of an endoxylanase were optimized by using a One-Factor-at-a-Time (OFAT) approach and response surface methodology (RSM). Maximum xylanase yield after RSM optimization was increased 3-fold, and 1.41- fold purification was achieved after ultrafiltration and ion-exchange chromatography, with about 6.2% yield. The highest activity of the purified xylanase was observed at 50 °C and pH 6. The enzyme displayed high thermal and pH stability, with more than 90% residual activity between pH 3.0–9.0 and between 30–40 °C, after 24 h of incubation, with half-lives of 30 min at 50 and 60 °C. The enzyme was mostly active against wheat arabinoxylan, and its kinetic parameters were analyzed (Km = 26.06 mg·mL−1 and Vmax = 5.647 U·mg−1). Wheat straw xylan hydrolysis with the purified β-1,4 endoxylanase showed that it was able to release xylooligosaccharides, making it suitable for different applications in food technology.


2010 ◽  
Vol 12 (4) ◽  
pp. 53-57 ◽  
Author(s):  
Agata Markowska-Szczupak ◽  
Krzysztof Ulfig ◽  
Barbara Grzmil ◽  
Antoni Morawski

A preliminary study on antifungal effect of TiO2-based paints in natural indoor light The antifungal activity of four commercial photocatalytic paints (KEIM Ecosil ME, Titanium FA, Photo Silicate and Silicate D) in natural indoor light was investigated. The paints contained TiO2 in rutile and anatase crystalline forms as evidenced by means of the X-ray diffraction analysis. In most cases the paints inhibited growth of fungi viz. Trichoderma viride, Aspergillus niger, Coonemeria crustacea, Eurotium herbariorum, and Dactylomyces sp. The KEIM Ecosil ME paint displayed the highest antifungal effect in the light, which could be explained with the highest anatase content. The paint antifungal activity and the fungal sensitivity to the TiO2-mediated photocatalytic reaction both decreased in the following orders: KEIM Ecosil ME > Titanium FA > Photo Silicate > Silicate D and T. viride > Dactylomyces sp. > A. niger > E. herbariorum.


2013 ◽  
Vol 164 (1) ◽  
pp. 50-58 ◽  
Author(s):  
Borbála Erdei ◽  
Balázs Frankó ◽  
Mats Galbe ◽  
Guido Zacchi

Bioethanol ◽  
2016 ◽  
Vol 2 (1) ◽  
Author(s):  
María García-Torreiro ◽  
Miguel Álvarez Pallín ◽  
María López-Abelairas ◽  
Thelmo A. Lu-Chau ◽  
Juan M. Lema

AbstractBioconversion of lignocellulosic materials into ethanol requires an intermediate pretreatment step for conditioning biomass. Sugar yields from wheat straw were previously improved by the addition of a mild alkali pretreatment step before bioconversion by the white-rot fungus Irpex lacteus. In this work, an alternative alkaline treatment, which significantly reduces water consumption, was implemented and optimized. Sugar recovery increased 117% with respect to the previously developed alkaline wash process at optimal process conditions (30°C, 30 minutes and 35.7% (w/w) of NaOH). In order to further reduce operational costs, a system for alkali recycling was implemented. This resulted in the treatment of 150% more wheat straw using the same amount of NaOH. Finally, enzymatic hydrolysis was optimized and resulted in a reduction of enzyme dose of 33%.


2015 ◽  
Vol 17 (5) ◽  
pp. 2896-2903 ◽  
Author(s):  
Ursula Fabiola Rodríguez-Zúñiga ◽  
David Cannella ◽  
Roberto de Campos Giordano ◽  
Raquel de Lima Camargo Giordano ◽  
Henning Jørgensen ◽  
...  

Sugarcane bagasse, corn stover, and wheat straw are among the most available resources for the production of cellulosic ethanol.


Aquaculture ◽  
2022 ◽  
Vol 547 ◽  
pp. 737474
Author(s):  
Marwa Gamal ◽  
Mohamed Abou Zaid ◽  
Iman Kamel Abou Mourad ◽  
Hussein Abd El Kareem ◽  
Ola M. Gomaa

2016 ◽  
Vol 29 (1) ◽  
pp. 222-233 ◽  
Author(s):  
TAMIRES CARVALHO DOS SANTOS ◽  
GEORGE ABREU FILHO ◽  
AILA RIANY DE BRITO ◽  
AURELIANO JOSÉ VIEIRA PIRES ◽  
RENATA CRISTINA FERREIRA BONOMO ◽  
...  

ABSTRACT: Prickly palm cactus husk was used as a solid-state fermentation support substrate for the production of cellulolytic enzymes using Aspergillus niger and Rhizopus sp. A Box-Behnken design was used to evaluate the effects of water activity, fermentation time and temperature on endoglucanase and total cellulase production. Response Surface Methodology showed that optimum conditions for endoglucanase production were achieved at after 70.35 h of fermentation at 29.56°C and a water activity of 0.875 for Aspergillus niger and after 68.12 h at 30.41°C for Rhizopus sp. Optimum conditions for total cellulase production were achieved after 74.27 h of fermentation at 31.22°C for Aspergillus niger and after 72.48 h and 27.86°C for Rhizopus sp. Water activity had a significant effect on Aspergillus niger endoglucanase production only. In industrial applications, enzymatic characterization is important for optimizing variables such as temperature and pH. In this study we showed that endoglucanase and total cellulase had a high level of thermostability and pH stability in all the enzymatic extracts. Enzymatic deactivation kinetic experiments indicated that the enzymes remained active after the freezing of the crude extract. Based on the results, bioconversion of cactus is an excellent alternative for the production of thermostable enzymes.


Sign in / Sign up

Export Citation Format

Share Document