Biomimetic RGD-engineered elastin-like extracellular matrix facilitates cutaneous wound healing in C57BL/6 mice by way of promoting the migration of epidermal keratinocytes and dermal fibroblasts

2012 ◽  
Vol 29 ◽  
pp. S153 ◽  
Author(s):  
Jin-Kyu Park ◽  
Seong-Kyoon Choi ◽  
Kyu-Shik Jeong ◽  
Kyeong-Min Lee ◽  
Gwon-Soo Jung ◽  
...  
2015 ◽  
Vol 212 (7) ◽  
pp. 1061-1080 ◽  
Author(s):  
Soung-Hoon Lee ◽  
Mi-Yeon Kim ◽  
Hyun-Yi Kim ◽  
Young-Mi Lee ◽  
Heesu Kim ◽  
...  

Wnt/β-catenin signaling plays important roles in cutaneous wound healing and dermal fibrosis. However, its regulatory mechanism has not been fully elucidated, and a commercially available wound-healing agent targeting this pathway is desirable but currently unavailable. We found that CXXC-type zinc finger protein 5 (CXXC5) serves as a negative feedback regulator of the Wnt/β-catenin pathway by interacting with the Dishevelled (Dvl) protein. In humans, CXXC5 protein levels were reduced in epidermal keratinocytes and dermal fibroblasts of acute wounds. A differential regulation of β-catenin, α-smooth muscle actin (α-SMA), and collagen I by overexpression and silencing of CXXC5 in vitro indicated a critical role for this factor in myofibroblast differentiation and collagen production. In addition, CXXC5−/− mice exhibited accelerated cutaneous wound healing, as well as enhanced keratin 14 and collagen synthesis. Protein transduction domain (PTD)–Dvl-binding motif (DBM), a competitor peptide blocking CXXC5-Dvl interactions, disrupted this negative feedback loop and activated β-catenin and collagen production in vitro. Co-treatment of skin wounds with PTD-DBM and valproic acid (VPA), a glycogen synthase kinase 3β (GSK3β) inhibitor which activates the Wnt/β-catenin pathway, synergistically accelerated cutaneous wound healing in mice. Together, these data suggest that CXXC5 would represent a potential target for future therapies aimed at improving wound healing.


2019 ◽  
Vol 2019 ◽  
pp. 1-30 ◽  
Author(s):  
Aleksandra Shedoeva ◽  
David Leavesley ◽  
Zee Upton ◽  
Chen Fan

Cutaneous wound healing is the process by which skin repairs itself. It is generally accepted that cutaneous wound healing can be divided into 4 phases: haemostasis, inflammation, proliferation, and remodelling. In humans, keratinocytes re-form a functional epidermis (reepithelialization) as rapidly as possible, closing the wound and reestablishing tissue homeostasis. Dermal fibroblasts migrate into the wound bed and proliferate, creating “granulation tissue” rich in extracellular matrix proteins and supporting the growth of new blood vessels. Ultimately, this is remodelled over an extended period, returning the injured tissue to a state similar to that before injury. Dysregulation in any phase of the wound healing cascade delays healing and may result in various skin pathologies, including nonhealing, or chronic ulceration. Indigenous and traditional medicines make extensive use of natural products and derivatives of natural products and provide more than half of all medicines consumed today throughout the world. Recognising the important role traditional medicine continues to play, we have undertaken an extensive survey of literature reporting the use of medical plants and plant-based products for cutaneous wounds. We describe the active ingredients, bioactivities, clinical uses, formulations, methods of preparation, and clinical value of 36 medical plant species. Several species stand out, including Centella asiatica, Curcuma longa, and Paeonia suffruticosa, which are popular wound healing products used by several cultures and ethnic groups. The popularity and evidence of continued use clearly indicates that there are still lessons to be learned from traditional practices. Hidden in the myriad of natural products and derivatives from natural products are undescribed reagents, unexplored combinations, and adjunct compounds that could have a place in the contemporary therapeutic inventory.


Cell Cycle ◽  
2021 ◽  
Vol 20 (5-6) ◽  
pp. 616-629
Author(s):  
Xinye Han ◽  
Peipei Wu ◽  
Linli Li ◽  
Hassan Mohamud Sahal ◽  
Cheng Ji ◽  
...  

2018 ◽  
Vol 68-69 ◽  
pp. 533-546 ◽  
Author(s):  
Mitsuaki Ono ◽  
Asuka Masaki ◽  
Azusa Maeda ◽  
Tina M. Kilts ◽  
Emilio S. Hara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document