Towards improved membrane protein production in Pichia pastoris: General and specific transcriptional response to membrane protein overexpression

2014 ◽  
Vol 31 (6) ◽  
pp. 538-552 ◽  
Author(s):  
Thomas Vogl ◽  
Gerhard G. Thallinger ◽  
Guenther Zellnig ◽  
David Drew ◽  
James M. Cregg ◽  
...  
1996 ◽  
Vol 16 (5) ◽  
pp. 2527-2536 ◽  
Author(s):  
H R Waterham ◽  
Y de Vries ◽  
K A Russel ◽  
W Xie ◽  
M Veenhuis ◽  
...  

We report the cloning of PER6, a gene essential for peroxisome biogenesis in the methylotrophic yeast Pichia pastoris. The PER6 sequence predicts that its product Per6p is a 52-kDa polypeptide with the cysteine-rich C3HC4 motif. Per6p has significant overall sequence similarity with the human peroxisome assembly factor PAF-1, a protein that is defective in certain patients suffering from the peroxisomal disorder Zellweger syndrome, and with car1, a protein required for peroxisome biogenesis and caryogamy in the filamentous fungus Podospora anserina. In addition, the C3HC4 motif and two of the three membrane-spanning segments predicted for Per6p align with the C3HC4 motifs and the two membrane-spanning segments predicted for PAF-1 and car1. Like PAF-1, Per6p is a peroxisomal integral membrane protein. In methanol- or oleic acid-induced cells of per6 mutants, morphologically recognizable peroxisomes are absent. Instead, peroxisomal remnants are observed. In addition, peroxisomal matrix proteins are synthesized but located in the cytosol. The similarities between Per6p and PAF-1 in amino acid sequence and biochemical properties, and between mutants defective in their respective genes, suggest that Per6p is the putative yeast homolog of PAF-1.


FEBS Letters ◽  
2015 ◽  
Vol 589 (15) ◽  
pp. 1713-1722 ◽  
Author(s):  
Erik Henrich ◽  
Christopher Hein ◽  
Volker Dötsch ◽  
Frank Bernhard

2016 ◽  
Vol 6 (2) ◽  
pp. 284-300 ◽  
Author(s):  
Dimitra Gialama ◽  
Kalliopi Kostelidou ◽  
Myrsini Michou ◽  
Dafni Chrysanthi Delivoria ◽  
Fragiskos N. Kolisis ◽  
...  

AIChE Journal ◽  
2011 ◽  
Vol 58 (10) ◽  
pp. 2966-2979 ◽  
Author(s):  
José M. Barrigón ◽  
Ramon Ramon ◽  
Isabel Rocha ◽  
Francisco Valero ◽  
Eugénio C. Ferreira ◽  
...  

2005 ◽  
Vol 16 (8) ◽  
pp. 3873-3886 ◽  
Author(s):  
Maarit Hölttä-Vuori ◽  
Fabien Alpy ◽  
Kimmo Tanhuanpää ◽  
Eija Jokitalo ◽  
Aino-Liisa Mutka ◽  
...  

MLN64 is a late endosomal cholesterol-binding membrane protein of an unknown function. Here, we show that MLN64 depletion results in the dispersion of late endocytic organelles to the cell periphery similarly as upon pharmacological actin disruption. The dispersed organelles in MLN64 knockdown cells exhibited decreased association with actin and the Arp2/3 complex subunit p34-Arc. MLN64 depletion was accompanied by impaired fusion of late endocytic organelles and delayed cargo degradation. MLN64 overexpression increased the number of actin and p34-Arc-positive patches on late endosomes, enhanced the fusion of late endocytic organelles in an actin-dependent manner, and stimulated the deposition of sterol in late endosomes harboring the protein. Overexpression of wild-type MLN64 was capable of rescuing the endosome dispersion in MLN64-depleted cells, whereas mutants of MLN64 defective in cholesterol binding were not, suggesting a functional connection between MLN64-mediated sterol transfer and actin-dependent late endosome dynamics. We propose that local sterol enrichment by MLN64 in the late endosomal membranes facilitates their association with actin, thereby governing actin-dependent fusion and degradative activity of late endocytic organelles.


Sign in / Sign up

Export Citation Format

Share Document