scholarly journals Temporal and spatial deep learning network for infrared thermal defect detection

2019 ◽  
Vol 108 ◽  
pp. 102164 ◽  
Author(s):  
Qin Luo ◽  
Bin Gao ◽  
W.L. Woo ◽  
Yang Yang
2021 ◽  
Vol 11 (22) ◽  
pp. 10935
Author(s):  
Hongju Zhou ◽  
Liping Sun ◽  
Hongwei Zhou ◽  
Man Zhao ◽  
Xinpei Yuan ◽  
...  

The health of trees has become an important issue in forestry. How to detect the health of trees quickly and accurately has become a key area of research for scholars in the world. In this paper, a living tree internal defect detection model is established and analyzed using model-driven theory, where the theoretical fundamentals and implementations of the algorithm are clarified. The location information of the defects inside the trees is obtained by setting a relative permittivity matrix. The data-driven inversion algorithm is realized using a model-driven algorithm that is used to optimize the deep convolutional neural network, which combines the advantages of model-driven algorithms and data-driven algorithms. The results of the comparison inversion algorithms, the BP neural network inversion algorithm, and the model-driven deep learning network inversion algorithm, are analyzed through simulations. The results shown that the model-driven deep learning network inversion algorithm maintains a detection accuracy of more than 90% for single defects or homogeneous double defects, while it can still have a detection accuracy of 78.3% for heterogeneous multiple defects. In the simulations, the single defect detection time of the model-driven deep learning network inversion algorithm is kept within 0.1 s. Additionally, the proposed method overcomes the high nonlinearity and ill-posedness electromagnetic inverse scattering and reduces the time cost and computational complexity of detecting internal defects in trees. The results show that resolution and accuracy are improved in the inversion image for detecting the internal defects of trees.


Author(s):  
Peter Evanschitzky ◽  
Nicole Auth ◽  
Tilmann Heil ◽  
Christian Felix Hermanns ◽  
Andreas Erdmann

2021 ◽  
Vol 12 ◽  
Author(s):  
Keke Shi ◽  
Weiping Xiao ◽  
Guoqing Wu ◽  
Yang Xiao ◽  
Yu Lei ◽  
...  

Objectives: Brain arteriovenous malformation (AVM) is one of the most common causes of intracranial hemorrhage in young adults, and its expeditious diagnosis on digital subtraction angiography (DSA) is essential for clinical decision-making. This paper firstly proposed a deep learning network to extract vascular time-domain features from DSA videos. Then, the temporal features were combined with spatial radiomics features to build an AVM-assisted diagnosis model.Materials and method: Anteroposterior position (AP) DSA videos from 305 patients, 153 normal and 152 with AVM, were analyzed. A deep learning network based on Faster-RCNN was proposed to track important vascular features in DSA. Then the appearance order of important vascular structures was quantified as the temporal features. The structure distribution and morphological features of vessels were quantified as 1,750 radiomics features. Temporal features and radiomics features were fused in a classifier based on sparse representation and support vector machine. An AVM diagnosis and grading system that combined the temporal and spatial radiomics features of DSA was finally proposed. Accuracy (ACC), sensitivity (SENS), specificity (SPEC), and area under the receiver operating characteristic curve (AUC) were calculated to evaluate the performance of the radiomics model.Results: For cerebrovascular structure detection, the average precision (AP) was 0.922, 0.991, 0.769, 0.899, and 0.929 for internal carotid artery, Willis circle, vessels, large veins, and venous sinuses, respectively. The mean average precision (mAP) of five time phases was 0.902. For AVM diagnosis, the models based on temporal features, radiomics features, and combined features achieved AUC of 0.916, 0.918, and 0.942, respectively. In the AVM grading task, the proposed combined model also achieved AUC of 0.871 in the independent testing set.Conclusion: DSA videos provide rich temporal and spatial distribution characteristics of cerebral blood vessels. Clinicians often interpret these features based on subjective experience. This paper proposes a scheme based on deep learning and traditional machine learning, which effectively integrates the complex spatiotemporal features in DSA, and verifies the value of this scheme in the diagnosis of AVM.


2021 ◽  
Vol 11 (1) ◽  
pp. 339-348
Author(s):  
Piotr Bojarczak ◽  
Piotr Lesiak

Abstract The article uses images from Unmanned Aerial Vehicles (UAVs) for rail diagnostics. The main advantage of such a solution compared to traditional surveys performed with measuring vehicles is the elimination of decreased train traffic. The authors, in the study, limited themselves to the diagnosis of hazardous split defects in rails. An algorithm has been proposed to detect them with an efficiency rate of about 81% for defects not less than 6.9% of the rail head width. It uses the FCN-8 deep-learning network, implemented in the Tensorflow environment, to extract the rail head by image segmentation. Using this type of network for segmentation increases the resistance of the algorithm to changes in the recorded rail image brightness. This is of fundamental importance in the case of variable conditions for image recording by UAVs. The detection of these defects in the rail head is performed using an algorithm in the Python language and the OpenCV library. To locate the defect, it uses the contour of a separate rail head together with a rectangle circumscribed around it. The use of UAVs together with artificial intelligence to detect split defects is an important element of novelty presented in this work.


2021 ◽  
Vol 11 (13) ◽  
pp. 5880
Author(s):  
Paloma Tirado-Martin ◽  
Raul Sanchez-Reillo

Nowadays, Deep Learning tools have been widely applied in biometrics. Electrocardiogram (ECG) biometrics is not the exception. However, the algorithm performances rely heavily on a representative dataset for training. ECGs suffer constant temporal variations, and it is even more relevant to collect databases that can represent these conditions. Nonetheless, the restriction in database publications obstructs further research on this topic. This work was developed with the help of a database that represents potential scenarios in biometric recognition as data was acquired in different days, physical activities and positions. The classification was implemented with a Deep Learning network, BioECG, avoiding complex and time-consuming signal transformations. An exhaustive tuning was completed including variations in enrollment length, improving ECG verification for more complex and realistic biometric conditions. Finally, this work studied one-day and two-days enrollments and their effects. Two-days enrollments resulted in huge general improvements even when verification was accomplished with more unstable signals. EER was improved in 63% when including a change of position, up to almost 99% when visits were in a different day and up to 91% if the user experienced a heartbeat increase after exercise.


Diagnostics ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1156
Author(s):  
Kang Hee Lee ◽  
Sang Tae Choi ◽  
Guen Young Lee ◽  
You Jung Ha ◽  
Sang-Il Choi

Axial spondyloarthritis (axSpA) is a chronic inflammatory disease of the sacroiliac joints. In this study, we develop a method for detecting bone marrow edema by magnetic resonance (MR) imaging of the sacroiliac joints and a deep-learning network. A total of 815 MR images of the sacroiliac joints were obtained from 60 patients diagnosed with axSpA and 19 healthy subjects. Gadolinium-enhanced fat-suppressed T1-weighted oblique coronal images were used for deep learning. Active sacroiliitis was defined as bone marrow edema, and the following processes were performed: setting the region of interest (ROI) and normalizing it to a size suitable for input to a deep-learning network, determining bone marrow edema using a convolutional-neural-network-based deep-learning network for individual MR images, and determining sacroiliac arthritis in subject examinations based on the classification results of individual MR images. About 70% of the patients and normal subjects were randomly selected for the training dataset, and the remaining 30% formed the test dataset. This process was repeated five times to calculate the average classification rate of the five-fold sets. The gradient-weighted class activation mapping method was used to validate the classification results. In the performance analysis of the ResNet18-based classification network for individual MR images, use of the ROI showed excellent detection performance of bone marrow edema with 93.55 ± 2.19% accuracy, 92.87 ± 1.27% recall, and 94.69 ± 3.03% precision. The overall performance was additionally improved using a median filter to reflect the context information. Finally, active sacroiliitis was diagnosed in individual subjects with 96.06 ± 2.83% accuracy, 100% recall, and 94.84 ± 3.73% precision. This is a pilot study to diagnose bone marrow edema by deep learning based on MR images, and the results suggest that MR analysis using deep learning can be a useful complementary means for clinicians to diagnose bone marrow edema.


Sign in / Sign up

Export Citation Format

Share Document