MIA syndrome en hémodialyse : apport des rapports neutrophiles/lymphocytes et plaquettes/lymphocytes

2021 ◽  
Vol 17 (5) ◽  
pp. 373
Author(s):  
H. Abid ◽  
S. Toumi ◽  
B. Fendri ◽  
R. Lahouimel ◽  
H. Chaker ◽  
...  
Keyword(s):  
2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Satoru Kuriyama ◽  
Yukio Maruyama ◽  
Hirokazu Honda

AbstractThe long-term clinical experiences with recombinant human erythropoietin (rHuEPO) and its analog derivatives have clearly proven that correction of anemia with erythropoiesis stimulating agent (ESA) not only reduces blood transfusion and improves patients’ QOL but has multiple benefits for the concurrent complications of CKD such as Cardio-Renal–Anemia (CRA) syndrome and/or malnutrition-inflammation-atherosclerosis (MIA) syndrome.Unlike ESA, the newly available agent, hypoxia-inducible factor (HIF) stabilizer, stimulates endogenous erythropoietin (EPO) by mimicking hypoxia with HIF prolyl hydroxylase domain enzyme (HIF-PHD) inhibition. The phase 2 and 3 clinical studies have shown that HIF stabilizers are as efficacious as ESA in ameliorating renal anemia. Whether the same clinical benefits on CRA and MIA syndrome hold true in patients given HIF stabilizers is a matter for future debate. Given that HIF stabilizers act on the multiple target genes, the use of this novel agent may lead to unwanted adverse events.Launching HIF stabilizers into the treatment of renal anemia provokes a concern about how this alternative treatment will be taken up in the daily clinical practice. However, guideline-oriented strategies on how to use HIF stabilizer is not available at this limited point due to scant clinical information. Nevertheless, this opinion-based review provides a future insight into the management of renal anemia with HIF stabilizer by reference to the past experiences with ESA. HIF stabilizers can preferably be indicated for CRA syndrome at pre-dialysis stage, ESA resistant anemia at advanced CKD stage, and perhaps for dysregulated iron metabolism akin to MIA syndrome in patients on dialysis.


2000 ◽  
Vol 20 (5_suppl) ◽  
pp. 57-67 ◽  
Author(s):  
Sung Hee Chung ◽  
Peter Stenvinkel ◽  
Jonas Bergström ◽  
Bengt Lindholm

Despite the bioincompatibility of the “old”, standard, high glucose, lactate-buffered peritoneal dialysis (PD) solutions, PD is itself a highly successful dialysis modality with patient survival equivalent to that of hemodialysis (HD) during the initial 3 – 5 years of dialysis therapy. Nevertheless, PD technique survival is often limited by infectious complications and alterations in the structure and function of the peritoneal membrane. These local changes also have a negative impact on patient survival owing to systemic effects such as those often seen in patients with high peritoneal transport rate and loss of ultrafiltration (UF) capacity. Patient mortality remains unacceptably high in both HD and PD patients, with most premature deaths being associated with signs of malnutrition, inflammation, and atherosclerotic cardiovascular disease (MIA syndrome). These systemic signs are likely to be influenced by PD solutions both directly and indirectly (via changes in the peritoneal membrane). New, biocompatible PD solutions may have favorable local effects (viability and function of the peritoneal membrane) and systemic effects (for example, on MIA syndrome). Amino acid–based solution [Nutrineal (N): Baxter Healthcare Corporation, Deerfield, IL, U.S.A.] may improve nutritional status as well as peritoneal membrane viability. Bicarbonate/lactate–buffered solution [Physioneal (P): Baxter Healthcare Corporation] may ameliorate local and systemic effects of low pH, high lactate, and high glucose degradation products. Icodextrin-based solution [Extraneal (E): Baxter Healthcare SA, Castlebar, Ireland] may improve hypertension and cardiovascular problems associated with fluid overload and may extend time on therapy in patients with loss of UF capacity. The positive effects of each of these new, biocompatible solutions have been demonstrated in several studies. It is likely that the combined use of N, P, and E solutions will produce favorable synergies in regard to both local effects (peritoneal viability) and systemic effects (less malnutrition, inflammation, and fluid overload). Solution combination is an exciting area for clinical study in the coming years. Furthermore, dialysis fluid additives such as hyaluronan, which protects and improves the function of the peritoneal membrane, may further improve PD solutions. The new, biocompatible PD solutions represent an entirely new era in the evolution of the PD therapy; they are likely to have markedly positive effects on both PD technique and PD patient survival in coming years.


2015 ◽  
Vol 40 (4) ◽  
pp. 337-343 ◽  
Author(s):  
Kazuhiko Tsuruya ◽  
Masahiro Eriguchi ◽  
Shunsuke Yamada ◽  
Hideki Hirakata ◽  
Takanari Kitazono

Background: Cardiorenal syndrome (CRS) in patients with end-stage kidney disease (ESKD) represents mainly cardiovascular disease (CVD) due to various complications associated with renal dysfunction—defined as type 4 CRS by Ronco et al.—because the effect of cardiac dysfunction on the kidneys does not need to be taken into consideration, unlike in non-dialysis dependent chronic kidney disease (CKD). Summary: Patients with ESKD are often in a state of chronic inflammation due to the upregulation of proinflammatory cytokines. Chronic inflammation leads to malnutrition and consequently to vascular endothelial dysfunction and vascular calcification, which is referred to as malnutrition-inflammation-atherosclerosis (MIA) syndrome and acts as a major risk factor for CVD. Anemia also plays a crucial role in CVD, and individuals with erythropoietin-resistant anemia have a particularly high risk of CVD. However, caution is emphasized because not only anemia itself, but also the overtreatment of anemia with erythropoiesis-stimulating agents aimed at elevating hemoglobin to ≥13 g/dl can also increase the risk of CVD. In CKD-mineral and bone disorder (CKD-MBD), phosphate load triggers the interactions between various factors such as calcium, parathyroid hormone, vitamin D, and fibroblast growth factor 23, promoting vascular calcification and thus becoming a risk factor for CVD. Key Messages: In addition to traditional atherosclerosis risk factors such as hypertension, diabetes, and dyslipidemia, the involvement of MIA syndrome, anemia, and CKD-MBD accompanying CKD have also become a focus for investigation as major players in CRS in patients with ESKD.


2009 ◽  
Vol 71 (02) ◽  
pp. 164-172 ◽  
Author(s):  
S. Simic Ogrizovic ◽  
D. Jovanovic ◽  
V. Dopsaj ◽  
M. Radovic ◽  
Z. Sumarac ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document