scholarly journals The development of high fidelity Steam Generator three dimensional thermal hydraulic coupling code: STAF-CT

Author(s):  
Xiaohan Zhao ◽  
Mingjun Wang ◽  
Ge Wu ◽  
Jing Zhang ◽  
Wenxi Tian ◽  
...  
Author(s):  
R. C. Schlaps ◽  
S. Shahpar ◽  
V. Gümmer

In order to increase the performance of a modern gas turbine, compressors are required to provide higher pressure ratio and avoid incurring higher losses. The tandem aerofoil has the potential to achieve a higher blade loading in combination with lower losses compared to single vanes. The main reason for this is due to the fact that a new boundary layer is generated on the second blade surface and the turning can be achieved with smaller separation occurring. The lift split between the two vanes with respect to the overall turning is an important design choice. In this paper an automated three-dimensional optimisation of a highly loaded compressor stator is presented. For optimisation a novel methodology based on the Multipoint Approximation Method (MAM) is used. MAM makes use of an automatic design of experiments, response surface modelling and a trust region to represent the design space. The CFD solutions are obtained with the high-fidelity 3D Navier-Stokes solver HYDRA. In order to increase the stage performance the 3D shape of the tandem vane is modified changing both the front and rear aerofoils. Moreover the relative location of the two aerofoils is controlled modifying the axial and tangential relative positions. It is shown that the novel optimisation methodology is able to cope with a large number of design parameters and produce designs which performs better than its single vane counterpart in terms of efficiency and numerical stall margin. One of the key challenges in producing an automatic optimisation process has been the automatic generation of high-fidelity computational meshes. The multi block-structured, high-fidelity meshing tool PADRAM is enhanced to cope with the tandem blade topologies. The wakes of each aerofoil is properly resolved and the interaction and the mixing of the front aerofoil wake and the second tandem vane are adequately resolved.


2013 ◽  
Vol 05 (01) ◽  
pp. 1350002 ◽  
Author(s):  
I. Benedetti ◽  
F. Barbe

A survey of recent contributions on three-dimensional grain-scale mechanical modelling of polycrystalline materials is given in this work. The analysis of material micro-structures requires the generation of reliable micro-morphologies and affordable computational meshes as well as the description of the mechanical behavior of the elementary constituents and their interactions. The polycrystalline microstructure is characterized by the topology, morphology and crystallographic orientations of the individual grains and by the grain interfaces and microstructural defects, within the bulk grains and at the inter-granular interfaces. Their analysis has been until recently restricted to two-dimensional cases, due to high computational requirements. In the last decade, however, the wider affordability of increased computational capability has promoted the development of fully three-dimensional models. In this work, different aspects involved in the grain-scale analysis of polycrystalline materials are considered. Different techniques for generating artificial micro-structures, ranging from highly idealized to experimentally based high-fidelity representations, are briefly reviewed. Structured and unstructured meshes are discussed. The main strategies for constitutive modelling of individual bulk grains and inter-granular interfaces are introduced. Some attention has also been devoted to three-dimensional multiscale approaches and some established and emerging applications have been discussed.


Author(s):  
Ioannis Templalexis ◽  
Alexios Alexiou ◽  
Vassilios Pachidis ◽  
Ioannis Roumeliotis ◽  
Nikolaos Aretakis

Coupling of high fidelity component calculations with overall engine performance simulations (zooming) can provide more accurate physics and geometry based estimates of component performance. Such a simulation strategy offers the ability to study complex phenomena and their effects on engine performance and enables component design changes to be studied at engine system level. Additionally, component interaction effects can be better captured. Overall, this approach can reduce the need for testing and the engine development time and cost. Different coupling methods and tools have been proposed and developed over the years ranging from integrating the results of the high fidelity code through conventional performance component maps to fully-integrated three-dimensional CFD models. The present paper deals with the direct integration of an in-house two-dimensional (through flow) streamline curvature code (SOCRATES) in a commercial engine performance simulation environment (PROOSIS) with the aim to establish the necessary coupling methodology that will allow future advanced studies to be performed (e.g. engine condition diagnosis, design optimization, mission analysis, distorted flow). A notional two-shaft turbofan model typical for light business jets and trainer aircraft is initially created using components with conventional map-defined performance. Next, a derivative model is produced where the fan component is replaced with one that integrates the high fidelity code. For both cases, an operating line is simulated at sea-level static take-off conditions and their performances are compared. Finally, the versatility of the approach is further demonstrated through a parametric study of various fan design parameters for a better thermodynamic matching with the driving turbine at design point operation.


Author(s):  
S. S. Cho ◽  
K. C. Park ◽  
R. Kolman

Computer implementation of the new algorithm developed in [1, 2, 3] and its numerical performance is presented, with detailed discussions of the element-by-element decomposition of the extensional and shear components and step-by-step algorithmic procedures. Numerical results as applied to wave propagating through cracked plane stress problems, three-dimensional problems and elasto-plastic problems illustrate high-fidelity of the present algorithm compared with existing ones, and the new algorithm is implemented into an open source research code TAHOE[4] code along with the further computational performance.


2011 ◽  
Vol 211-212 ◽  
pp. 1105-1109
Author(s):  
Xi Qiu Fan

Traditional optical lithography techniques to fabricate three-dimensional (3D) nanostructures are complicated and time consuming. Due to the capability to replicate nanostructures repeatedly in a large area with high resolution and uniformity, nanoimprint (NI) has been recognized as one of the promising approaches to fabricate 3-D nanostructures with high throughput and low cost. This paper introduces a novel 3-D nanostructure fabrication method by nanoimprint on silicon substrate. Nanoscale gratings and microlens array are taken as examples of 3-D nanostructures fabricated by nanoimprint. High fidelity demonstrates the possibility of nanoimprint to fabricate 3-D nanostructures on silicon substrate.


Sign in / Sign up

Export Citation Format

Share Document