scholarly journals Top-down effects on early visual processing in humans: A predictive coding framework

2011 ◽  
Vol 35 (5) ◽  
pp. 1237-1253 ◽  
Author(s):  
Karsten Rauss ◽  
Sophie Schwartz ◽  
Gilles Pourtois
2018 ◽  
Author(s):  
Susanne Eisenhauer ◽  
Christian J. Fiebach ◽  
Benjamin Gagl

AbstractWord familiarity and predictive context facilitate visual word processing, leading to faster recognition times and reduced neuronal responses. Previously, models with and without top-down connections, including lexical-semantic, pre-lexical (e.g., orthographic/ phonological), and visual processing levels were successful in accounting for these facilitation effects. Here we systematically assessed context-based facilitation with a repetition priming task and explicitly dissociated pre-lexical and lexical processing levels using a pseudoword familiarization procedure. Experiment 1 investigated the temporal dynamics of neuronal facilitation effects with magnetoencephalography (MEG; N=38 human participants) while Experiment 2 assessed behavioral facilitation effects (N=24 human participants). Across all stimulus conditions, MEG demonstrated context-based facilitation across multiple time windows starting at 100 ms, in occipital brain areas. This finding indicates context based-facilitation at an early visual processing level. In both experiments, we furthermore found an interaction of context and lexical familiarity, such that stimuli with associated meaning showed the strongest context-dependent facilitation in brain activation and behavior. Using MEG, this facilitation effect could be localized to the left anterior temporal lobe at around 400 ms, indicating within-level (i.e., exclusively lexical-semantic) facilitation but no top-down effects on earlier processing stages. Increased pre-lexical familiarity (in pseudowords familiarized utilizing training) did not enhance or reduce context effects significantly. We conclude that context based-facilitation is achieved within visual and lexical processing levels. Finally, by testing alternative hypotheses derived from mechanistic accounts of repetition suppression, we suggest that the facilitatory context effects found here are implemented using a predictive coding mechanism.Significance StatementThe goal of reading is to derive meaning from script. This highly automatized process benefits from facilitation depending on word familiarity and text context. Facilitation might occur exclusively within each level of word processing (i.e., visual, pre-lexical, and/or lexical-semantic) but could alternatively also propagate in a top-down manner from higher to lower levels. To test the relevance of these two alternative accounts at each processing level, we combined a pseudoword learning approach controlling for letter string familiarity with repetition priming. We found enhanced context-based facilitation at the lexical-semantic but not pre-lexical processing stage, and no evidence of top-down facilitation from lexical-semantic to earlier word recognition processes. We also identified predictive coding as the most likely mechanism underlying within-level context-based facilitation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Petra Csizmadia ◽  
István Czigler ◽  
Boglárka Nagy ◽  
Zsófia Anna Gaál

We do not know enough about the cognitive background of creativity despite its significance. Using an active oddball paradigm with unambiguous and ambiguous portrait paintings as the standard stimuli, our aim was to examine whether: creativity in the figural domain influences the perception of visual stimuli; any stages of visual processing; or if healthy aging has an effect on these processes. We investigated event related potentials (ERPs) and applied ERP decoding analyses in four groups: younger less creative; younger creative; older less creative; and older creative adults. The early visual processing did not differ between creativity groups. In the later ERP stages the amplitude for the creative compared with the less creative groups was larger between 300 and 500 ms. The stimuli types were clearly distinguishable: within the 300–500 ms range the amplitude was larger for ambiguous rather than unambiguous paintings, but this difference in the traditional ERP analysis was only observable in the younger, not elderly groups, who also had this difference when using decoding analysis. Our results could not prove that visual creativity influences the early stage of perception, but showed creativity had an effect on stimulus processing in the 300–500 ms range, in indexing differences in top-down control, and having more flexible cognitive control in the younger creative group.


2004 ◽  
Vol 63 (3) ◽  
pp. 143-149 ◽  
Author(s):  
Fred W. Mast ◽  
Charles M. Oman

The role of top-down processing on the horizontal-vertical line length illusion was examined by means of an ambiguous room with dual visual verticals. In one of the test conditions, the subjects were cued to one of the two verticals and were instructed to cognitively reassign the apparent vertical to the cued orientation. When they have mentally adjusted their perception, two lines in a plus sign configuration appeared and the subjects had to evaluate which line was longer. The results showed that the line length appeared longer when it was aligned with the direction of the vertical currently perceived by the subject. This study provides a demonstration that top-down processing influences lower level visual processing mechanisms. In another test condition, the subjects had all perceptual cues available and the influence was even stronger.


The construction of directionally selective units, and their use in the processing of visual motion, are considered. The zero crossings of ∇ 2 G(x, y) ∗ I(x, y) are located, as in Marr & Hildreth (1980). That is, the image is filtered through centre-surround receptive fields, and the zero values in the output are found. In addition, the time derivative ∂[∇ 2 G(x, y) ∗ l(x, y) ]/∂ t is measured at the zero crossings, and serves to constrain the local direction of motion to within 180°. The direction of motion can be determined in a second stage, for example by combining the local constraints. The second part of the paper suggests a specific model of the information processing by the X and Y cells of the retina and lateral geniculate nucleus, and certain classes of cortical simple cells. A number of psychophysical and neurophysiological predictions are derived from the theory.


Neuron ◽  
2014 ◽  
Vol 82 (4) ◽  
pp. 887-895 ◽  
Author(s):  
John C. Tuthill ◽  
Aljoscha Nern ◽  
Gerald M. Rubin ◽  
Michael B. Reiser

1997 ◽  
Vol 8 (2) ◽  
pp. 95-100 ◽  
Author(s):  
Kimron Shapiro ◽  
Jon Driver ◽  
Robert Ward ◽  
Robyn E. Sorensen

When people must detect several targets in a very rapid stream of successive visual events at the same location, detection of an initial target induces misses for subsequent targets within a brief period. This attentional blink may serve to prevent interruption of ongoing target processing by temporarily suppressing vision for subsequent stimuli. We examined the level at which the internal blink operates, specifically, whether it prevents early visual processing or prevents quite substantial processing from reaching awareness. Our data support the latter view. We observed priming from missed letter targets, benefiting detection of a subsequent target with the same identity but a different case. In a second study, we observed semantic priming from word targets that were missed during the blink. These results demonstrate that attentional gating within the blink operates only after substantial stimulus processing has already taken place. The results are discussed in terms of two forms of visual representation, namely, types and tokens.


Sign in / Sign up

Export Citation Format

Share Document