scholarly journals Directional selectivity and its use in early visual processing

The construction of directionally selective units, and their use in the processing of visual motion, are considered. The zero crossings of ∇ 2 G(x, y) ∗ I(x, y) are located, as in Marr & Hildreth (1980). That is, the image is filtered through centre-surround receptive fields, and the zero values in the output are found. In addition, the time derivative ∂[∇ 2 G(x, y) ∗ l(x, y) ]/∂ t is measured at the zero crossings, and serves to constrain the local direction of motion to within 180°. The direction of motion can be determined in a second stage, for example by combining the local constraints. The second part of the paper suggests a specific model of the information processing by the X and Y cells of the retina and lateral geniculate nucleus, and certain classes of cortical simple cells. A number of psychophysical and neurophysiological predictions are derived from the theory.

2016 ◽  
Author(s):  
Kit D. Longden ◽  
Martina Wicklein ◽  
Benjamin J. Hardcastle ◽  
Stephen J. Huston ◽  
Holger G. Krapp

SummaryMany animals use the visual motion generated by travelling in a line, the translatory optic flow, to successfully navigate obstacles: near objects appear larger and to move more quickly than distant ones. Flies are experts at navigating cluttered environments, and while their visual processing of rotatory optic flow is understood in exquisite detail, how they process translatory optic flow remains a mystery. Here, we present novel cell types that have motion receptive fields matched to translation self-motion, the vertical translation (VT) cells. One of these, the VT1 cell, encodes forwards sideslip self-motion, and fires action potentials in clusters of spikes, spike bursts. We show that the spike burst coding is size and speed-tuned, and is selectively modulated by parallax motion, the relative motion experienced during translation. These properties are spatially organized, so that the cell is most excited by clutter rather than isolated objects. When the fly is presented with a simulation of flying past an elevated object, the spike burst activity is modulated by the height of the object, and the single spike rate is unaffected. When the moving object alone is experienced, the cell is weakly driven. Meanwhile, the VT2-3 cells have motion receptive fields matched to the lift axis. In conjunction with previously described horizontal cells, the VT cells have the properties required for the fly to successfully navigate clutter and encode its movements along near cardinal axes of thrust, lift and forward sideslip.


2001 ◽  
Vol 18 (6) ◽  
pp. 973-981 ◽  
Author(s):  
L.E. MAHON ◽  
R.L. DE VALOIS

Cell responses to drifting Cartesian (parallel) and non-Cartesian (concentric, radial, and hyperbolic) stimuli were recorded in and beyond the classical receptive field (CRF) in the lateral geniculate nucleus (LGN), V1, and V2 of anesthetized monkeys. Many cells were equally responsive to Cartesian and non-Cartesian, especially concentric, gratings. Around 15% of cells in each area were significantly more responsive to concentric compared to parallel gratings; however, cells significantly more responsive to parallel compared to concentric gratings were more numerous in the cortex. While many cells responded to hyperbolic and radial gratings, few were most responsive to these gratings. Cell selectivity decreased for Cartesian and increased for non-Cartesian gratings from V1 to V2 and the relative response varied as a function of stimulus extent with respect to the CRF. Complex, nonoriented, nondirectional cells with a low aspect ratio (AR) responded best to non-Cartesian gratings. These results cannot be fully explained using Gabor linear/energy models of simple and complex receptive fields (RFs) although such models predict some cells to respond equally to Cartesian and non-Cartesian gratings. Cells significantly more responsive to non-Cartesian gratings can be accounted for by CRF selectivity influenced by modulation from the nonclassical receptive field (nCRF). The present study shows that Cartesian/non-Cartesian selectivity is not an emergent property of V4 cells but is present at all levels of early visual processing being subserved by a subset of cells with specific tuning properties.


2009 ◽  
Vol 26 (1) ◽  
pp. 21-34 ◽  
Author(s):  
JAN WILTSCHUT ◽  
FRED H. HAMKER

AbstractEfficient coding has been proposed to play an essential role in early visual processing. While several approaches used an objective function to optimize a particular aspect of efficient coding, such as the minimization of mutual information or the maximization of sparseness, we here explore how different estimates of efficient coding in a model with nonlinear dynamics and Hebbian learning determine the similarity of model receptive fields to V1 data with respect to spatial tuning. Our simulation results indicate that most measures of efficient coding correlate with the similarity of model receptive field data to V1 data, that is, optimizing the estimate of efficient coding increases the similarity of the model data to experimental data. However, the degree of the correlation varies with the different estimates of efficient coding, and in particular, the variance in the firing pattern of each cell does not predict a similarity of model and experimental data.


2008 ◽  
Vol 18 (05) ◽  
pp. 419-431 ◽  
Author(s):  
JOSE RUIZ-PINALES ◽  
RENE JAIME-RIVAS ◽  
ERIC LECOLINET ◽  
MARIA JOSE CASTRO-BLEDA

We present an off-line cursive word recognition system based completely on neural networks: reading models and models of early visual processing. The first stage (normalization) preprocesses the input image in order to reduce letter position uncertainty; the second stage (feature extraction) is based on the feedforward model of orientation selectivity; the third stage (letter pre-recognition) is based on a convolutional neural network, and the last stage (word recognition) is based on the interactive activation model.


2018 ◽  
Author(s):  
Bernard J E Evans ◽  
David C O'Carroll ◽  
Joseph M Fabian ◽  
Steven D Wiederman

An important task for any aerial creature is the ability to ascertain their own movement (ego-motion) through their environment. Neurons thought to underlie this behaviour have been well-characterised in many insect models including flies, moths and bees. However, dragonfly wide-field motion pathways remain undescribed. Some species of Dragonflies, such as Hemicordulia tau, engage in hawking behaviour, hovering in a single area for extended periods of time whilst also engaging in fast-moving patrols and highly dynamic pursuits of prey and conspecifics. These varied flight behaviours place very different constraints on establishing ego-motion from optic flow cues hinting at a sophisticated wide-field motion analysis system capable of detecting both fast and slow motion. We characterised wide-field motion sensitive neurons via intracellular recordings in Hemicordulia dragonflies finding similar properties to those found in other species. We found that the spatial and temporal tuning properties of these neurons were broadly similar but differed significantly in their adaptation to sustained motion. We categorised a total of three different subclasses, finding differences between subclasses in their motion adaptation and response to the broadband statistics of natural images. The differences found correspond well with the dynamics of the varied behavioural tasks hawking dragonflies perform. These findings may underpin the exquisite flight behaviours found in dragonflies. They also hint at the need for the great complexity seen in dragonfly early visual processing.


Author(s):  
Lisa von Stockhausen ◽  
Sara Koeser ◽  
Sabine Sczesny

Past research has shown that the gender typicality of applicants’ faces affects leadership selection irrespective of a candidate’s gender: A masculine facial appearance is congruent with masculine-typed leadership roles, thus masculine-looking applicants are hired more certainly than feminine-looking ones. In the present study, we extended this line of research by investigating hiring decisions for both masculine- and feminine-typed professional roles. Furthermore, we used eye tracking to examine the visual exploration of applicants’ portraits. Our results indicate that masculine-looking applicants were favored for the masculine-typed role (leader) and feminine-looking applicants for the feminine-typed role (team member). Eye movement patterns showed that information about gender category and facial appearance was integrated during first fixations of the portraits. Hiring decisions, however, were not based on this initial analysis, but occurred at a second stage, when the portrait was viewed in the context of considering the applicant for a specific job.


Neuron ◽  
2014 ◽  
Vol 82 (4) ◽  
pp. 887-895 ◽  
Author(s):  
John C. Tuthill ◽  
Aljoscha Nern ◽  
Gerald M. Rubin ◽  
Michael B. Reiser

2005 ◽  
Vol 94 (6) ◽  
pp. 4156-4167 ◽  
Author(s):  
Daniel Zaksas ◽  
Tatiana Pasternak

Neurons in cortical area MT have localized receptive fields (RF) representing the contralateral hemifield and play an important role in processing visual motion. We recorded the activity of these neurons during a behavioral task in which two monkeys were required to discriminate and remember visual motion presented in the ipsilateral hemifield. During the task, the monkeys viewed two stimuli, sample and test, separated by a brief delay and reported whether they contained motion in the same or in opposite directions. Fifty to 70% of MT neurons were activated by the motion stimuli presented in the ipsilateral hemifield at locations far removed from their classical receptive fields. These responses were in the form of excitation or suppression and were delayed relative to conventional MT responses. Both excitatory and suppressive responses were direction selective, but the nature and the time course of their directionality differed from the conventional excitatory responses recorded with stimuli in the RF. Direction selectivity of the excitatory remote response was transient and early, whereas the suppressive response developed later and persisted after stimulus offset. The presence or absence of these unusual responses on error trials, as well as their magnitude, was affected by the behavioral significance of stimuli used in the task. We hypothesize that these responses represent top-down signals from brain region(s) accessing information about stimuli in the entire visual field and about the behavioral state of the animal. The recruitment of neurons in the opposite hemisphere during processing of behaviorally relevant visual signals reveals a mechanism by which sensory processing can be affected by cognitive task demands.


Sign in / Sign up

Export Citation Format

Share Document