Modeling motoneurons after spinal cord injury: persistent inward currents and plateau potentials

2005 ◽  
Vol 65-66 ◽  
pp. 719-726 ◽  
Author(s):  
Joe Graham ◽  
Victoria Booth ◽  
Ranu Jung
2013 ◽  
Vol 109 (6) ◽  
pp. 1473-1484 ◽  
Author(s):  
Jessica M. D'Amico ◽  
Katherine C. Murray ◽  
Yaqing Li ◽  
K. Ming Chan ◽  
Mark G. Finlay ◽  
...  

In animals, the recovery of motoneuron excitability in the months following a complete spinal cord injury is mediated, in part, by increases in constitutive serotonin (5-HT2) and norepinephrine (α1) receptor activity, which facilitates the reactivation of calcium-mediated persistent inward currents (CaPICs) without the ligands serotonin and norepinephrine below the injury. In this study we sought evidence for a similar role of constitutive monoamine receptor activity in the development of spasticity in human spinal cord injury. In chronically injured participants with partially preserved sensory and motor function, the serotonin reuptake inhibitor citalopram facilitated long-lasting reflex responses (spasms) previously shown to be mediated by CaPICs, suggesting that in incomplete spinal cord injury, functional descending sources of monoamines are present to activate monoamine receptors below the lesion. However, in participants with motor or motor/sensory complete injuries, the inverse agonist cyproheptadine, which blocks both ligand and constitutive 5-HT2/α1 receptor activity, decreased long-lasting reflexes, whereas the neutral antagonist chlorpromazine, which only blocks ligand activation of these receptors, had no effect. When tested in noninjured control participants having functional descending sources of monoamines, chlorpromazine was effective in reducing CaPIC-mediated motor unit activity. On the basis of these combined results, it appears that in severe spinal cord injury, facilitation of persistent inward currents and muscle spasms is mainly mediated by the activation of constitutive 5-HT2 and α1 receptor activity. Drugs that more selectively block these constitutively active monoamine receptors may provide better oral control of spasticity, especially in motor complete spinal cord injury where reducing motoneuron excitability is the primary goal.


2008 ◽  
Vol 100 (1) ◽  
pp. 212-223 ◽  
Author(s):  
Kimberly J. Dougherty ◽  
Shawn Hochman

Dysfunction of the spinal GABAergic system has been implicated in pain syndromes following spinal cord injury (SCI). Since lamina I is involved in nociceptive and thermal signaling, we characterized the effects of chronic SCI on the cellular properties of its GABAergic neurons fluorescently identified in spinal slices from GAD67-GFP transgenic mice. Whole cell recordings were obtained from the lumbar cord of 13- to 17-day-old mice, including those having had a thoracic segment (T8-11) removed 6–9 days prior to experiments. Following chronic SCI, the distribution, incidence, and firing classes of GFP+ cells remained similar to controls, and there were minimal changes in membrane properties in cells that responded to current injection with a single spike. In contrast, cells displaying tonic/initial burst firing had more depolarized membrane potentials, increased steady-state outward currents, and increased spike heights. Moreover, higher firing frequencies and spontaneous plateau potentials were much more prevalent after chronic SCI, and these changes occurred predominantly in cells displaying a tonic firing pattern. Persistent inward currents (PICs) were observed in a similar fraction of cells from spinal transects and may have contributed to these plateaus. Persistent Na+ and L-type Ca2+ channels likely contributed to the currents as both were identified pharmacologically. In conclusion, chronic SCI induces a plastic response in a subpopulation of lamina I GABAergic interneurons. Alterations are directed toward amplifying neuronal responsiveness. How these changes alter spinal sensory integration and whether they contribute to sensory dysfunction remains to be elucidated.


2007 ◽  
Vol 97 (5) ◽  
pp. 3166-3180 ◽  
Author(s):  
Michelle M. Rank ◽  
Xiaole Li ◽  
David J. Bennett ◽  
Monica A. Gorassini

The recovery of persistent inward currents (PICs) and motoneuron excitability after chronic spinal cord transection is mediated, in part, by the development of supersensitivity to residual serotonin (5HT) below the lesion. The purpose of this paper is to investigate if, like 5HT, endogenous sources of norepinephrine (NE) facilitate motoneuron PICs after chronic spinal transection. Cutaneous-evoked reflex responses in tail muscles of awake chronic spinal rats were measured after increasing presynaptic release of NE by administration of amphetamine. An increase in long-lasting reflexes, known to be mediated by the calcium component of the PIC (CaPIC), was observed even at low doses (0.1–0.2 mg/kg) of amphetamine. These findings were repeated in a reduced S2 in vitro preparation, demonstrating that the increased long-lasting reflexes by amphetamine were neural. Under intracellular voltage clamp, amphetamine application led to a large facilitation of the motoneuron CaPIC. This indicates that the increases in long-lasting reflexes induced by amphetamine in the awake animal were, in part, due to actions directly on the motoneuron. Reflex responses in acutely spinal animals were facilitated by amphetamine similar to chronic animals but only at doses that were ten times greater than that required in chronic animals (0.2 mg/kg chronic vs. 2.0 mg/kg acute), pointing to a development of supersensitivity to endogenous NE in chronic animals. In summary, the increases in long-lasting reflexes and associated motoneuron CaPICs by amphetamine are likely due to an increased release of endogenous NE, which motoneurons become supersensitive to in the chronic stages of spinal cord injury.


2011 ◽  
Vol 105 (6) ◽  
pp. 2781-2790 ◽  
Author(s):  
Renée D. Theiss ◽  
T. George Hornby ◽  
W. Zev Rymer ◽  
Brian D. Schmit

The objectives of this study were to probe the contribution of spinal neuron persistent sodium conductances to reflex hyperexcitability in human chronic spinal cord injury. The intrinsic excitability of spinal neurons provides a novel target for medical intervention. Studies in animal models have shown that persistent inward currents, such as persistent sodium currents, profoundly influence neuronal excitability, and recovery of persistent inward currents in spinal neurons of animals with spinal cord injury routinely coincides with the appearance of spastic reflexes. Pharmacologically, this neuronal excitability can be decreased by agents that reduce persistent inward currents, such as the selective persistent sodium current inhibitor riluzole. We were able to recruit seven subjects with chronic incomplete spinal cord injury who were not concurrently taking antispasticity medications into the study. Reflex responses (flexion withdrawal and H-reflexes) and volitional strength (isometric maximum voluntary contractions) were tested at the ankle before and after placebo-controlled, double-blinded oral administration of riluzole (50 mg). Riluzole significantly decreased the peak ankle dorsiflexion torque component of the flexion withdrawal reflex. Peak maximum voluntary torque in both dorsiflexion and plantarflexion directions was not significantly changed. Average dorsiflexion torque sustained during the 5-s isometric maximum voluntary contraction, however, increased significantly. There was no effect, however, on the monosynaptic plantar and dorsiflexor H-reflex responses. Overall, these results demonstrate a contribution of persistent sodium conductances to polysynaptic reflex excitability in human chronic spinal cord injury without a significant role in maximum strength production. These results suggest that intrinsic spinal cellular excitability could be a target for managing chronic spinal cord injury hyperreflexia impairments without causing a significant loss in volitional strength.


2011 ◽  
Vol 106 (5) ◽  
pp. 2167-2179 ◽  
Author(s):  
Sharmila Venugopal ◽  
Thomas M. Hamm ◽  
Sharon M. Crook ◽  
Ranu Jung

Spasticity is commonly observed after chronic spinal cord injury (SCI) and many other central nervous system disorders (e.g., multiple sclerosis, stroke). SCI-induced spasticity has been associated with motoneuron hyperexcitability partly due to enhanced activation of intrinsic persistent inward currents (PICs). Disrupted spinal inhibitory mechanisms also have been implicated. Altered inhibition can result from complex changes in the strength, kinetics, and reversal potential ( ECl−) of γ-aminobutyric acid A (GABAA) and glycine receptor currents. Development of optimal therapeutic strategies requires an understanding of the impact of these interacting factors on motoneuron excitability. We employed computational methods to study the effects of conductance, kinetics, and ECl− of a dendritic inhibition on PIC activation and motoneuron discharge. A two-compartment motoneuron with enhanced PICs characteristic of SCI and receiving recurrent inhibition from Renshaw cells was utilized in these simulations. This dendritic inhibition regulated PIC onset and offset and exerted its strongest effects at motoneuron recruitment and in the secondary range of the current-frequency relationship during PIC activation. Increasing inhibitory conductance compensated for moderate depolarizing shifts in ECl− by limiting PIC activation and self-sustained firing. Furthermore, GABAA currents exerted greater control on PIC activation than glycinergic currents, an effect attributable to their slower kinetics. These results suggest that modulation of the strength and kinetics of GABAA currents could provide treatment strategies for uncontrollable spasms.


2021 ◽  
Vol 15 ◽  
Author(s):  
Mingchen C. Jiang ◽  
Derin V. Birch ◽  
Charles J. Heckman ◽  
Vicki M. Tysseling

Spinal cord injury (SCI) results in not only the loss of voluntary muscle control, but also in the presence of involuntary movement or spasms. These spasms post-SCI involve hyperexcitability in the spinal motor system. Hyperactive motor commands post SCI result from enhanced excitatory postsynaptic potentials (EPSPs) and persistent inward currents in voltage-gated L-type calcium channels (LTCCs), which are reflected in evoked root reflexes with different timings. To further understand the contributions of these cellular mechanisms and to explore the involvement of LTCC subtypes in SCI-induced hyperexcitability, we measured root reflexes with ventral root recordings and motoneuron activities with intracellular recordings in an in vitro preparation using a mouse model of chronic SCI (cSCI). Specifically, we explored the effects of 1-(3-chlorophenethyl)-3-cyclopentylpyrimidine-2,4,6-(1H,3H,5H)-trione (CPT), a selective negative allosteric modulator of CaV1.3 LTCCs. Our results suggest a hyperexcitability in the spinal motor system in these SCI mice. Bath application of CPT displayed slow onset but dose-dependent inhibition of the root reflexes with the strongest effect on LLRs. However, the inhibitory effect of CPT is less potent in cSCI mice than in acute SCI (aSCI) mice, suggesting changes either in composition of CaV1.3 or other cellular mechanisms in cSCI mice. For intracellular recordings, the intrinsic plateau potentials, was observed in more motoneurons in cSCI mice than in aSCI mice. CPT inhibited the plateau potentials and reduced motoneuron firings evoked by intracellular current injection. These results suggest that the LLR is an important target and that CPT has potential in the therapy of SCI-induced muscle spasms.


2003 ◽  
Vol 89 (1) ◽  
pp. 416-426 ◽  
Author(s):  
T. G. Hornby ◽  
W. Z. Rymer ◽  
E. N. Benz ◽  
B. D. Schmit

The physiological basis of flexion spasms in individuals after spinal cord injury (SCI) may involve alterations in the properties of spinal neurons in the flexion reflex pathways. We hypothesize that these changes would be manifested as progressive increases in reflex response with repetitive stimulus application (i.e., “windup”) of the flexion reflexes. We investigated the windup of flexion reflex responses in 12 individuals with complete chronic SCI. Flexion reflexes were triggered using trains of electrical stimulation of plantar skin at variable intensities and inter-stimulus intervals. For threshold and suprathreshold stimulation, windup of both peak ankle and hip flexion torques and of integrated tibialis anterior electromyographic activity was observed consistently in all patients at inter-stimulus intervals ≤3 s. For subthreshold stimuli, facilitation of reflexes occurred only at intervals ≤1 s. Similarly, the latency of flexion reflexes decreased significantly at intervals ≤1 s. Patients that were receiving anti-spasticity medications (e.g., baclofen) had surprisingly larger windup of reflex responses than those who did not take such medications, although this difference may be related to differences of spasm frequency between the groups of subjects. The results indicate that the increase in spinal neuronal excitability following a train of electrical stimuli lasts for ≤3 s, similar to previous studies of nociceptive processing. Such long-lasting increases in flexion reflex responses suggest that cellular mechanisms such as plateau potentials in spinal motoneurons, interneurons, or both, may partially mediate spinal cord hyperexcitability in the absence of descending modulatory input.


2007 ◽  
Vol 97 (2) ◽  
pp. 1236-1246 ◽  
Author(s):  
X. Li ◽  
K. Murray ◽  
P. J. Harvey ◽  
E. W. Ballou ◽  
D. J. Bennett

In the months after spinal cord transection, motoneurons in the rat spinal cord develop large persistent inward currents (PICs) that are responsible for muscle spasticity. These PICs are mediated by low-threshold TTX-sensitive sodium currents (Na PIC) and L-type calcium currents (Ca PIC). Recently, the Na PIC was shown to become supersensitive to serotonin (5-HT) after chronic injury. In the present paper, a similar change in the sensitivity of the Ca PIC to 5-HT was investigated after injury. The whole sacrocaudal spinal cord from acute spinal rats and spastic chronic spinal rats (S2 level transection 2 mo previously) was studied in vitro. Intracellular recordings were made from motoneurons and slow voltages ramps were applied to measure PICs. TTX was used to block the Na PIC. For motoneurons of chronic spinal rats, a low dose of 5-HT (1 μM) significantly lowered the threshold of the Ca PIC from −56.7 ± 6.0 to −63.1 ± 7.1 mV and increased the amplitude of the Ca PIC from 2.4 ± 1.0 to 3.0 ± 0.73 nA. Higher doses of 5-HT acted similarly. For motoneurons of acute spinal rats, low doses of 5-HT had no significant effects, whereas a high dose (about 30 μM) significantly lowered the threshold of the L-Ca PIC from −58.5 ± 14.8 to −62.5 ± 3.6 mV and increased the amplitude of the Ca PIC from 0.69 ± 1.05 to 1.27 ± 1.1 nA. Thus Ca PICs in motoneurons are about 30-fold supersensitive to 5-HT in chronic spinal rats. The 5-HT–induced facilitation of the Ca PIC was blocked by nimodipine, not by the Ih current blocker Cs+ (3 mM) or the SK current blocker apamin (0.15 μM), and it lasted for hours after the removal of 5-HT from the nCSF, even increasing initially after removing 5-HT. The effects of 5-HT make motoneurons more excitable and ultimately lead to larger, more easily activated plateaus and self-sustained firing. The supersensitivity to 5-HT suggests the small amounts of endogenous 5-HT below the injury in a chronic spinal rat may act on supersensitive receptors to produce large Ca PICs and ultimately enable muscle spasms.


2010 ◽  
Vol 103 (2) ◽  
pp. 761-778 ◽  
Author(s):  
J. Wienecke ◽  
A-C. Westerdahl ◽  
H. Hultborn ◽  
O. Kiehn ◽  
J. Ryge

Spinal cord injury leads to severe problems involving impaired motor, sensory, and autonomic functions. After spinal injury there is an initial phase of hyporeflexia followed by hyperreflexia, often referred to as spasticity. Previous studies have suggested a relationship between the reappearance of endogenous plateau potentials in motor neurons and the development of spasticity after spinalization. To unravel the molecular mechanisms underlying the increased excitability of motor neurons and the return of plateau potentials below a spinal cord injury we investigated changes in gene expression in this cell population. We adopted a rat tail-spasticity model with a caudal spinal transection that causes a progressive development of spasticity from its onset after 2 to 3 wk until 2 mo postinjury. Gene expression changes of fluorescently identified tail motor neurons were studied 21 and 60 days postinjury. The motor neurons undergo substantial transcriptional regulation in response to injury. The patterns of differential expression show similarities at both time points, although there are 20% more differentially expressed genes 60 days compared with 21 days postinjury. The study identifies targets of regulation relating to both ion channels and receptors implicated in the endogenous expression of plateaux. The regulation of excitatory and inhibitory signal transduction indicates a shift in the balance toward increased excitability, where the glutamatergic N-methyl-d-aspartate receptor complex together with cholinergic system is up-regulated and the γ-aminobutyric acid type A receptor system is down-regulated. The genes of the pore-forming proteins Cav1.3 and Nav1.6 were not up-regulated, whereas genes of proteins such as nonpore-forming subunits and intracellular pathways known to modulate receptor and channel trafficking, kinetics, and conductivity showed marked regulation. On the basis of the identified changes in global gene expression in motor neurons, the present investigation opens up for new potential targets for treatment of motor dysfunction following spinal cord injury.


Sign in / Sign up

Export Citation Format

Share Document