17β-Estradiol attenuates the influence of chronic activated microglia on SH-SY5Y cell proliferation via canonical WNT signaling pathway

2019 ◽  
Vol 692 ◽  
pp. 174-180
Author(s):  
Rubina Shakya ◽  
Sukumal Chongthammakun
2013 ◽  
Vol 72 (Suppl 3) ◽  
pp. A807.1-A807
Author(s):  
M. H. van den Bosch ◽  
A. B. Blom ◽  
P. L. van Lent ◽  
H. M. van Beuningen ◽  
F. A. van de Loo ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (4) ◽  
pp. e94343 ◽  
Author(s):  
Xinxin Li ◽  
Cheng Chen ◽  
Fangmei Wang ◽  
Wenhuan Huang ◽  
Zhongheng Liang ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 723 ◽  
Author(s):  
Jarosław Paluszczak

The knowledge about the molecular alterations which are found in head and neck squamous cell carcinomas (HNSCC) has much increased in recent years. However, we are still awaiting the translation of this knowledge to new diagnostic and therapeutic options. Among the many molecular changes that are detected in head and neck cancer, the abnormalities in several signaling pathways, which regulate cell proliferation, cell death and stemness, seem to be especially promising with regard to the development of targeted therapies. Canonical Wnt signaling is a pathway engaged in the formation of head and neck tissues, however it is not active in adult somatic mucosal cells. The aim of this review paper is to bring together significant data related to the current knowledge on the mechanisms and functional significance of the dysregulation of the Wnt/β-catenin pathway in head and neck tumors. Research evidence related to the role of Wnt signaling activation in the stimulation of cell proliferation, migration and inhibition of apoptosis in HNSCC is presented. Moreover, its role in promoting stemness traits in head and neck cancer stem-like cells is described. Evidence corroborating the hypothesis that the Wnt signaling pathway is a very promising target of novel therapeutic interventions in HNSCC is also discussed.


2019 ◽  
Vol 98 ◽  
pp. 246-255 ◽  
Author(s):  
Chu-Chih Hung ◽  
Amy Chaya ◽  
Kai Liu ◽  
Konstantinos Verdelis ◽  
Charles Sfeir

2019 ◽  
Vol 98 (5) ◽  
pp. 580-588 ◽  
Author(s):  
Y. Xiong ◽  
Y. Fang ◽  
Y. Qian ◽  
Y. Liu ◽  
X. Yang ◽  
...  

The Wnt ligands display varied spatiotemporal expression in the epithelium and mesenchyme in the developing tooth. Thus far, the actions of these differentially expressed Wnt ligands on tooth development are not clear. Shh expression specifies the odontogenic epithelium during initiation and is consistently restricted to the dental epithelium during tooth development. In this study, we inactivate Wntless ( Wls), the key regulator for Wnt trafficking, by Shh-Cre to investigate how the Wnt ligands produced in the dental epithelium lineage act on tooth development. We find that conditional knockout of Wls by Shh-Cre leads to defective ameloblast and odontoblast differentiation. WlsShh-Cre teeth display reduced canonical Wnt signaling activity in the inner enamel epithelium and the underlying mesenchyme at the early bell stage, as exhibited by target gene expression and BAT-gal staining. The expression of Wnt5a and Wnt10b is not changed in WlsShh-Cre teeth. By contrast, Wnt10a expression is significantly increased in response to epithelial Wls deficiency. In addition, the expression of Hedgehog signaling pathway components Shh, Gli1, and Patched1 was greatly decreased in WlsShh-Cre teeth. Epithelial Wls loss of function in Shh lineage also leads to aberrant cell proliferation in dental epithelium and mesenchyme at embryonic day 16.5; however, the cell apoptosis is unaffected. Moreover, we find that Decorin and Col1a1, the key markers for odontoblast differentiation that are downregulated in WlsShh-Cre teeth, act as direct downstream targets of the canonical Wnt signaling pathway by chromatin immunoprecipitation analysis. Additionally, Decorin and Col1a1 expression can be increased by lithium chloride (LiCl) treatment in the in vitro tooth explants. Taken together, our results suggest that the spatial expression of Wnt ligands within the dental epithelial lineage regulates the differentiation of tooth structures in later stages.


Sign in / Sign up

Export Citation Format

Share Document