scholarly journals Structured Ensembles: An approach to reduce the memory footprint of ensemble methods

2021 ◽  
Vol 144 ◽  
pp. 407-418
Author(s):  
Jary Pomponi ◽  
Simone Scardapane ◽  
Aurelio Uncini
2021 ◽  
Vol 13 (2) ◽  
pp. 238
Author(s):  
Zhice Fang ◽  
Yi Wang ◽  
Gonghao Duan ◽  
Ling Peng

This study presents a new ensemble framework to predict landslide susceptibility by integrating decision trees (DTs) with the rotation forest (RF) ensemble technique. The proposed framework mainly includes four steps. First, training and validation sets are randomly selected according to historical landslide locations. Then, landslide conditioning factors are selected and screened by the gain ratio method. Next, several training subsets are produced from the training set and a series of trained DTs are obtained by using a DT as a base classifier couple with different training subsets. Finally, the resultant landslide susceptibility map is produced by combining all the DT classification results using the RF ensemble technique. Experimental results demonstrate that the performance of all the DTs can be effectively improved by integrating them with the RF ensemble technique. Specifically, the proposed ensemble methods achieved the predictive values of 0.012–0.121 higher than the DTs in terms of area under the curve (AUC). Furthermore, the proposed ensemble methods are better than the most popular ensemble methods with the predictive values of 0.005–0.083 in terms of AUC. Therefore, the proposed ensemble framework is effective to further improve the spatial prediction of landslides.


2021 ◽  
Vol 37 (1--4) ◽  
pp. 1-27
Author(s):  
Yiming Zhang ◽  
Chengfei Zhang ◽  
Yaozheng Wang ◽  
Kai Yu ◽  
Guangtao Xue ◽  
...  

Unikernel specializes a minimalistic LibOS and a target application into a standalone single-purpose virtual machine (VM) running on a hypervisor, which is referred to as (virtual) appliance . Compared to traditional VMs, Unikernel appliances have smaller memory footprint and lower overhead while guaranteeing the same level of isolation. On the downside, Unikernel strips off the process abstraction from its monolithic appliance and thus sacrifices flexibility, efficiency, and applicability. In this article, we examine whether there is a balance embracing the best of both Unikernel appliances (strong isolation) and processes (high flexibility/efficiency). We present KylinX, a dynamic library operating system for simplified and efficient cloud virtualization by providing the pVM (process-like VM) abstraction. A pVM takes the hypervisor as an OS and the Unikernel appliance as a process allowing both page-level and library-level dynamic mapping. At the page level, KylinX supports pVM fork plus a set of API for inter-pVM communication (IpC, which is compatible with conventional UNIX IPC). At the library level, KylinX supports shared libraries to be linked to a Unikernel appliance at runtime. KylinX enforces mapping restrictions against potential threats. We implement a prototype of KylinX by modifying MiniOS and Xen tools. Extensive experimental results show that KylinX achieves similar performance both in micro benchmarks (fork, IpC, library update, etc.) and in applications (Redis, web server, and DNS server) compared to conventional processes, while retaining the strong isolation benefit of VMs/Unikernels.


Author(s):  
Hamid Reza Pourghasemi ◽  
Fatemeh Honarmandnejad ◽  
Mahrooz Rezaei ◽  
Mohammad Hassan Tarazkar ◽  
Nitheshnirmal Sadhasivam

2021 ◽  
Vol 21 (2) ◽  
pp. 1-27
Author(s):  
Michał Król ◽  
Alberto Sonnino ◽  
Mustafa Al-Bassam ◽  
Argyrios G. Tasiopoulos ◽  
Etienne Rivière ◽  
...  

As cryptographic tokens and altcoins are increasingly being built to serve as utility tokens, the notion of useful work consensus protocols is becoming ever more important. With useful work consensus protocols, users get rewards after they have carried out some specific tasks useful for the network. While in some cases the proof of some utility or service can be provided, the majority of tasks are impossible to verify reliably. To deal with such cases, we design “Proof-of-Prestige” (PoP)—a reward system that can run directly on Proof-of-Stake (PoS) blockchains or as a smart contract on top of Proof-of-Work (PoW) blockchains. PoP introduces “prestige,” which is a volatile resource that, in contrast to coins, regenerates over time. Prestige can be gained by performing useful work, spent when benefiting from services, and directly translates to users minting power. Our scheme allows us to reliably reward decentralized workers while keeping the system free for the end-users. PoP is resistant against Sybil and collusion attacks and can be used with a vast range of unverifiable tasks. We build a simulator to assess the cryptoeconomic behavior of the system and deploy a full prototype of a content dissemination platform rewarding its participants. We implement the blockchain component on both Ethereum (PoW) and Cosmos (PoS), provide a mobile application, and connect it with our scheme with a negligible memory footprint. Finally, we adapt a fair exchange protocol allowing us to atomically exchange files for rewards also in scenarios where not all the parties have Internet connectivity. Our evaluation shows that even for large Ethereum traces, PoP introduces sub-millisecond computational overhead for miners in Cosmos and less than 0.013$ smart contract invocation cost for users in Ethereum.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4050
Author(s):  
Dejan Pavlovic ◽  
Christopher Davison ◽  
Andrew Hamilton ◽  
Oskar Marko ◽  
Robert Atkinson ◽  
...  

Monitoring cattle behaviour is core to the early detection of health and welfare issues and to optimise the fertility of large herds. Accelerometer-based sensor systems that provide activity profiles are now used extensively on commercial farms and have evolved to identify behaviours such as the time spent ruminating and eating at an individual animal level. Acquiring this information at scale is central to informing on-farm management decisions. The paper presents the development of a Convolutional Neural Network (CNN) that classifies cattle behavioural states (`rumination’, `eating’ and `other’) using data generated from neck-mounted accelerometer collars. During three farm trials in the United Kingdom (Easter Howgate Farm, Edinburgh, UK), 18 steers were monitored to provide raw acceleration measurements, with ground truth data provided by muzzle-mounted pressure sensor halters. A range of neural network architectures are explored and rigorous hyper-parameter searches are performed to optimise the network. The computational complexity and memory footprint of CNN models are not readily compatible with deployment on low-power processors which are both memory and energy constrained. Thus, progressive reductions of the CNN were executed with minimal loss of performance in order to address the practical implementation challenges, defining the trade-off between model performance versus computation complexity and memory footprint to permit deployment on micro-controller architectures. The proposed methodology achieves a compression of 14.30 compared to the unpruned architecture but is nevertheless able to accurately classify cattle behaviours with an overall F1 score of 0.82 for both FP32 and FP16 precision while achieving a reasonable battery lifetime in excess of 5.7 years.


Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 216 ◽  
Author(s):  
Jianjia Wang ◽  
Xichen Wu ◽  
Mingrui Li ◽  
Hui Wu ◽  
Edwin Hancock

This paper seeks to advance the state-of-the-art in analysing fMRI data to detect onset of Alzheimer’s disease and identify stages in the disease progression. We employ methods of network neuroscience to represent correlation across fMRI data arrays, and introduce novel techniques for network construction and analysis. In network construction, we vary thresholds in establishing BOLD time series correlation between nodes, yielding variations in topological and other network characteristics. For network analysis, we employ methods developed for modelling statistical ensembles of virtual particles in thermal systems. The microcanonical ensemble and the canonical ensemble are analogous to two different fMRI network representations. In the former case, there is zero variance in the number of edges in each network, while in the latter case the set of networks have a variance in the number of edges. Ensemble methods describe the macroscopic properties of a network by considering the underlying microscopic characterisations which are in turn closely related to the degree configuration and network entropy. When applied to fMRI data in populations of Alzheimer’s patients and controls, our methods demonstrated levels of sensitivity adequate for clinical purposes in both identifying brain regions undergoing pathological changes and in revealing the dynamics of such changes.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 830
Author(s):  
William E. Lewis ◽  
Timothy L. Olander ◽  
Christopher S. Velden ◽  
Christopher Rozoff ◽  
Stefano Alessandrini

Accurate, reliable estimates of tropical cyclone (TC) intensity are a crucial element in the warning and forecast process worldwide, and for the better part of 50 years, estimates made from geostationary satellite observations have been indispensable to forecasters for this purpose. One such method, the Advanced Dvorak Technique (ADT), was used to develop analog ensemble (AnEn) techniques that provide more precise estimates of TC intensity with instant access to information on the reliability of the estimate. The resulting methods, ADT-AnEn and ADT-based Error Analog Ensemble (ADTE-AnEn), were trained and tested using seventeen years of historical ADT intensity estimates using k-fold cross-validation with 10 folds. Using only two predictors, ADT-estimated current intensity (maximum wind speed) and TC center latitude, both AnEn techniques produced significant reductions in mean absolute error and bias for all TC intensity classes in the North Atlantic and for most intensity classes in the Eastern Pacific. The ADTE-AnEn performed better for extreme intensities in both basins (significantly so in the Eastern Pacific) and will be incorporated in the University of Wisconsin’s Cooperative Institute for Meteorological Satellite Studies (UW-CIMSS) workflow for further testing during operations in 2021.


Sign in / Sign up

Export Citation Format

Share Document