Inhibitory, facilitatory, and excitatory effects of ATP and purinergic receptor agonists on the activity of rat cutaneous nociceptors in vitro

2005 ◽  
Vol 51 (4) ◽  
pp. 405-416 ◽  
Author(s):  
Hiroki Yajima ◽  
Jun Sato ◽  
Rocio Giron ◽  
Ryogo Nakamura ◽  
Kazue Mizumura



2021 ◽  
Vol 187 ◽  
pp. 108478
Author(s):  
Chris Bladen ◽  
Somayeh Mirlohi ◽  
Marina Santiago ◽  
Mitchell Longworth ◽  
Michael Kassiou ◽  
...  


2017 ◽  
Vol 27 (22) ◽  
pp. 5071-5075 ◽  
Author(s):  
Shaikha S. AlNeyadi ◽  
Abdu Adem ◽  
Naheed Amer ◽  
Alaa A. Salem ◽  
Ibrahim M. Abdou


1997 ◽  
Vol 185 (3) ◽  
pp. 579-582 ◽  
Author(s):  
Davide Ferrari ◽  
Paola Chiozzi ◽  
Simonetta Falzoni ◽  
Stefania Hanau ◽  
Francesco Di  Virgilio

Microglial cells express a peculiar plasma membrane receptor for extracellular ATP, named P2Z/P2X7 purinergic receptor, that triggers massive transmembrane ion fluxes and a reversible permeabilization of the plasma membrane to hydrophylic molecules of up to 900 dalton molecule weight and eventual cell death (Di Virgilio, F. 1995. Immunol. Today. 16:524–528). The physiological role of this newly cloned (Surprenant, A., F. Rassendren, E. Kawashima, R.A. North and G. Buell. 1996. Science (Wash. DC). 272:735–737) cytolytic receptor is unknown. In vitro and in vivo activation of the macrophage and microglial cell P2Z/P2X7 receptor by exogenous ATP causes a large and rapid release of mature IL-1β. In the present report we investigated the role of microglial P2Z/P2X7 receptor in IL-1β release triggered by LPS. Our data suggest that LPS-dependent IL-1β release involves activation of this purinergic receptor as it is inhibited by the selective P2Z/P2X7 blocker oxidized ATP and modulated by ATP-hydrolyzing enzymes such as apyrase or hexokinase. Furthermore, microglial cells release ATP when stimulated with LPS. LPS-dependent release of ATP is also observed in monocyte-derived human macrophages. It is suggested that bacterial endotoxin activates an autocrine/paracrine loop that drives ATP-dependent IL-1β secretion.



1999 ◽  
Vol 112 (3) ◽  
pp. 297-305
Author(s):  
A. Solini ◽  
P. Chiozzi ◽  
A. Morelli ◽  
R. Fellin ◽  
F. Di Virgilio

We have investigated reponses to extracellular ATP in human fibroblasts obtained by skin biopsies. Our data show that these cells express a P2X7 purinergic receptor, as judged by (1) RT-PCR with specific primers, (2) reactivity with a specific anti-P2X7 antiserum, (3) activation by the selective P2X agonist benzoylbenzoylATP and (4) stimulation of transmembrane ion fluxes. Stimulation with benzoylbenzoylATP, and to a lesser extent with ATP, also caused striking morphological changes and increased formation of cytoplasmic microvesicles. These changes were fully reversible upon nucleotide removal. Two known blockers of P2X receptors, oxidised ATP and pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid, inhibited the morphological changes fully and the ion fluxes partially. The residual rise in intracellular Ca2+ levels and membrane depolarization observed in the presence of the inhibitors were dependent upon activation of a P2Y-type receptor exhibiting a peculiar pharmacological profile, in that CTP was the preferred agonist. ATP stimulation triggered release of the pro-inflammatory cytokine IL-6 in fibroblasts pre-treated with PMA and bacterial endotoxin. These observations reveal a novel pathway for fibroblast activation and for their recruitment in the inflammatory response.



2003 ◽  
Vol 47 (12) ◽  
pp. 3806-3809 ◽  
Author(s):  
Christopher P. Locher ◽  
Peter C. Ruben ◽  
Jiri Gut ◽  
Philip J. Rosenthal

ABSTRACT Toidentify new leads for the treatment of Plasmodium falciparum malaria, we screened a panel of serotonin (5-hydroxytryptamine [5HT]) receptor agonists and antagonists and determined their effects on parasite growth. The 5HT1A receptor agonists 8-hydroxy-N-(di-n-propyl)-aminotetralin (8-OH-DPAT), 2,5-dimethoxy-4-iodoamphetamine, and 2,5-dimethoxy-4-bromophenylethylamine inhibited the growth of P. falciparum in vitro (50% inhibitory concentrations, 0.4, 0.7, and 1.5 μM, respectively). In further characterizing the antiparasitic effects of 8-OH-DPAT, we found that this serotonin receptor agonist did not affect the growth of Leishmania infantum, Trypanosoma cruzi, Trypanosoma brucei brucei, or Trichostrongylus colubriformis in vitro and did not demonstrate cytotoxicity against the human lung fibroblast cell line MRC-5. 8-OH-DPAT had similar levels of growth inhibition against several different P. falciparum isolates having distinct chemotherapeutic resistance phenotypes, and its antimalarial effect was additive when it was used in combination with chloroquine against a chloroquine-resistant isolate. In a patch clamp assay, 8-OH-DPAT blocked a P. falciparum surface membrane channel, suggesting that serotonin receptor agonists are a novel class of antimalarials that target a nutrient transport pathway. Since there may be neurological involvement with the use of 8-OH-DPAT and other serotonin receptor agonists in the treatment of falciparum malaria, new lead compounds derived from 8-OH-DPAT will need to be modified to prevent potential neurological side effects. Nevertheless, these results suggest that 8-OH-DPAT is a new lead compound with which to derive novel antimalarial agents and is a useful tool with which to characterize P. falciparum membrane channels.



2021 ◽  
pp. 105280
Author(s):  
Menno Grouls ◽  
Meike van der Zande ◽  
Laura de Haan ◽  
Hans Bouwmeester


2021 ◽  
Author(s):  
Nicholas S. Akins ◽  
Nisha Mishra ◽  
Hannah M. Harris ◽  
Narendar Dudhipala ◽  
Seong Jong Kim ◽  
...  

Analgesia is commonly mediated through the mu or kappa opioid receptor agonism. Unfortunately, selective mu or kappa receptor agonists often cause harmful side effects. Recently, ligands exhibiting dual agonism to the opioid receptors, such as to mu and kappa, or to mu and delta, have been suggested to temper undesirable adverse effects while retaining analgesic activity. Herein we report an introduction of various 6,5-fused rings to C2 of the salvinorin scaffold <i>via</i> an ester linker. <i>In vitro</i> studies showed that some of these compounds have dual agonism on kappa and mu opioid receptors, while some have triple agonism on kappa, mu, and delta. <i>In vivo </i>studies on the lead dual kappa and mu opioid receptor agonist, compound <b>10</b>, showed that it<b> </b>produced analgesic activity while avoiding anxiogenic effects in murine models, thus providing further strong evidence for the therapeutic advantages of dual opioid receptor agonists over selective opioid receptor agonists.



2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Ilaria Dicembrini ◽  
Laura Pala ◽  
Carlo Maria Rotella

Promoting long-term adherence to lifestyle modification and choice of antidiabetic agent with low hypoglycemia risk profile and positive weight profile could be the most effective strategy in achieving sustained glycemic control and in reducing comorbidities. From this perspective, vast interest has been generated by glucagon-like peptide-1 (GLP-1) receptor agonists and dipeptidyl peptidase-4 inhibitors (DPP-4i). In this review our ten-year clinical and laboratory experience byin vitroandin vivostudies is reported. Herein, we reviewed available data on the efficacy and safety profile of GLP-1 receptor agonists and DPP-4i. The introduction of incretin hormone-based therapies represents a novel therapeutic strategy, because these drugs not only improve glycemia with minimal risk of hypoglycemia but also have other extraglycemic beneficial effects. In clinical studies, both GLP-1 receptor agonists and DPP-4i, improveβcell function indexes. All these agents showed trophic effects on beta-cell mass in animal studies. The use of these drugs is associated with positive or neucral effect on body weight and improvements in blood pressure, diabetic dyslipidemia, hepatic steazosis markets, and myocardial function. These effects have the potential to reduce the burden of cardiovascular disease, which is a major cause of mortality in patients with diabetes.



Sign in / Sign up

Export Citation Format

Share Document