scholarly journals From Theory to Clinical Practice in the Use of GLP-1 Receptor Agonists and DPP-4 Inhibitors Therapy

2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Ilaria Dicembrini ◽  
Laura Pala ◽  
Carlo Maria Rotella

Promoting long-term adherence to lifestyle modification and choice of antidiabetic agent with low hypoglycemia risk profile and positive weight profile could be the most effective strategy in achieving sustained glycemic control and in reducing comorbidities. From this perspective, vast interest has been generated by glucagon-like peptide-1 (GLP-1) receptor agonists and dipeptidyl peptidase-4 inhibitors (DPP-4i). In this review our ten-year clinical and laboratory experience byin vitroandin vivostudies is reported. Herein, we reviewed available data on the efficacy and safety profile of GLP-1 receptor agonists and DPP-4i. The introduction of incretin hormone-based therapies represents a novel therapeutic strategy, because these drugs not only improve glycemia with minimal risk of hypoglycemia but also have other extraglycemic beneficial effects. In clinical studies, both GLP-1 receptor agonists and DPP-4i, improveβcell function indexes. All these agents showed trophic effects on beta-cell mass in animal studies. The use of these drugs is associated with positive or neucral effect on body weight and improvements in blood pressure, diabetic dyslipidemia, hepatic steazosis markets, and myocardial function. These effects have the potential to reduce the burden of cardiovascular disease, which is a major cause of mortality in patients with diabetes.

2009 ◽  
Vol 05 (01) ◽  
pp. 63
Author(s):  
Pamela M Katz ◽  
Lawrence A Leiter ◽  
◽  

Incretin-based therapies, including both glucagon-like peptide 1 (GLP-1) analogs and dipeptidyl peptidase-4 (DPP-4) inhibitors, are increasingly being used for the treatment of type 2 diabetes. GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) are gut-derived incretin hormones that regulate glucose through co-ordinated effects on pancreatic alpha and beta cells. DPP-4 inhibitors enhance the effects of endogenous, active GLP-1 and GIP by inhibiting the enzyme responsible for their degradation. These agents lower glycated hemoglobin (HbA1c) and help patients achieve glycemic targets, yet are weight-neutral and, due to their glucose-dependant mechanism of action, carry minimal risk of hypoglycemia. Furthermore, incretin-based therapies may alter disease progression through preservation of beta-cell mass and function. Although initially recommended for use in the early stages of type 2 diabetes, DPP-4 inhibitors appear to maintain their glycemic efficacy across the continuum of disease. They can be used either as monotherapy or in dual or triple combination therapy with other oral antihyperglycemic agents, and potentially also in combination with insulin. This review will focus on DPP-4 inhibitors and current clinical trial evidence to support their use in the management of hyperglycemia in type 2 diabetes.


2021 ◽  
Vol 22 (17) ◽  
pp. 9504
Author(s):  
María Sofía Martínez ◽  
Alexander Manzano ◽  
Luis Carlos Olivar ◽  
Manuel Nava ◽  
Juan Salazar ◽  
...  

Type 2 Diabetes Mellitus (T2DM) is one of the most prevalent chronic metabolic disorders, and insulin has been placed at the epicentre of its pathophysiological basis. However, the involvement of impaired alpha (α) cell function has been recognized as playing an essential role in several diseases, since hyperglucagonemia has been evidenced in both Type 1 and T2DM. This phenomenon has been attributed to intra-islet defects, like modifications in pancreatic α cell mass or dysfunction in glucagon’s secretion. Emerging evidence has shown that chronic hyperglycaemia provokes changes in the Langerhans’ islets cytoarchitecture, including α cell hyperplasia, pancreatic beta (β) cell dedifferentiation into glucagon-positive producing cells, and loss of paracrine and endocrine regulation due to β cell mass loss. Other abnormalities like α cell insulin resistance, sensor machinery dysfunction, or paradoxical ATP-sensitive potassium channels (KATP) opening have also been linked to glucagon hypersecretion. Recent clinical trials in phases 1 or 2 have shown new molecules with glucagon-antagonist properties with considerable effectiveness and acceptable safety profiles. Glucagon-like peptide-1 (GLP-1) agonists and Dipeptidyl Peptidase-4 inhibitors (DPP-4 inhibitors) have been shown to decrease glucagon secretion in T2DM, and their possible therapeutic role in T1DM means they are attractive as an insulin-adjuvant therapy.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Minyoung Lee ◽  
Eugene Shin ◽  
Jaehyun Bae ◽  
Yongin Cho ◽  
Ji-Yeon Lee ◽  
...  

Abstract Dipeptidyl peptidase-4 inhibitors (DPP4i) are antidiabetic medications that prevent cleavage of incretin hormones by dipeptidyl peptidase-4 (DPP4). DPP4 is ubiquitously expressed, and its hepatic DPP4 expression is upregulated under non-alcoholic steatohepatitis (NASH) conditions. We investigated the effect of DPP4i treatment on NASH pathogenesis, as well as its potential underlying molecular mechanisms. Mice were randomly divided into three groups: Group 1, chow-fed mice treated with vehicle for 20 weeks; Group 2, high-fat, high-fructose, and high-cholesterol Amylin liver NASH (AMLN) diet-fed mice treated with vehicle for 20 weeks; Group 3, AMLN diet-fed mice treated with vehicle for the first 10 weeks, followed by the DPP4i teneligliptin (20 mg/kg/day) for additional 10 weeks. DPP4i administration reduced serum liver enzyme and hepatic triglyceride levels and markedly improved hepatic steatosis and fibrosis in the AMLN diet-induced NASH model. In vivo, NASH alleviation significantly correlated with the suppression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor-mediated apoptosis and downregulated hepatic DPP4 expression. In vitro, DPP4i treatment significantly decreased the markers of TRAIL receptor-mediated lipoapoptosis and suppressed DPP4 expression in palmitate-treated hepatocytes. In conclusion, DPP4i may efficiently attenuate the pathogenesis of AMLN diet-induced NASH in mice by suppressing lipotoxicity-induced apoptosis, possibly by modulating hepatic DPP4 expression.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
L. Pala ◽  
C. M. Rotella

The introduction of incretin hormone-based therapies represents a novel therapeutic strategy, since these drugs not only improve glycemia with minimal risk of hypoglycemia, but also have other extraglycemic beneficial effects. These agents, which are effective in improving glucose control, could also have positive effects on the incidence of cardiovascular events. The aim of this review is to summarize the present literature about the role of dipeptidyl peptidase 4 (DPP4) in cardiovascular districts, not only strictly correlated to its effect on glucagon-like peptide-1 (GLP-1) circulating levels, but also to what is known about possible cardiovascular actions. Actually, DPP4 is known to be present in many cells and tissues and its effects go beyond purely metabolic aspects. Almost always the inhibition of DPP4 activity is associated with improved cardiovascular profile, but it has shown to possess antithrombotic properties and these different effects could be connected with a site and/or species specificity of DPP4. Certainly, DPP4 seems to exert many functions, both directly and indirectly, on cardiovascular districts, opening new possibilities of prevention and treatment of complications at this level, not only in patients affected by diabetes mellitus.


2010 ◽  
Vol 37 (3) ◽  
pp. 357-363 ◽  
Author(s):  
Olof Eriksson ◽  
Mahabuba Jahan ◽  
Peter Johnström ◽  
Olle Korsgren ◽  
Anders Sundin ◽  
...  

2019 ◽  
Vol 241 (1) ◽  
pp. 45-57 ◽  
Author(s):  
A Edlund ◽  
M Barghouth ◽  
M Hühn ◽  
M Abels ◽  
J S E Esguerra ◽  
...  

Cystic fibrosis-related diabetes (CFRD) is a common complication for patients with cystic fibrosis (CF), a disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). The cause of CFRD is unclear, but a commonly observed reduction in first-phase insulin secretion suggests defects at the beta cell level. Here we aimed to examine alpha and beta cell function in the Cftr tm1 EUR/F508del mouse model (C57BL/6J), which carries the most common human mutation in CFTR, the F508del mutation. CFTR expression, beta cell mass, insulin granule distribution, hormone secretion and single cell capacitance changes were evaluated using islets (or beta cells) from F508del mice and age-matched wild type (WT) mice aged 7–10 weeks. Granular pH was measured with DND-189 fluorescence. Serum glucose, insulin and glucagon levels were measured in vivo, and glucose tolerance was assessed using IPGTT. We show increased secretion of proinsulin and concomitant reduced secretion of C-peptide in islets from F508del mice compared to WT mice. Exocytosis and number of docked granules was reduced. We confirmed reduced granular pH by CFTR stimulation. We detected decreased pancreatic beta cell area, but unchanged beta cell number. Moreover, the F508del mutation caused failure to suppress glucagon secretion leading to hyperglucagonemia. In conclusion, F508del mice have beta cell defects resulting in (1) reduced number of docked insulin granules and reduced exocytosis and (2) potential defective proinsulin cleavage and secretion of immature insulin. These observations provide insight into the functional role of CFTR in pancreatic islets and contribute to increased understanding of the pathogenesis of CFRD.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Na-Hyung Kim ◽  
Taeyang Yu ◽  
Dae Ho Lee

A cell surface serine protease, dipeptidyl peptidase 4 (DPP-4), cleaves dipeptide from peptides containing proline or alanine in the N-terminal penultimate position. Two important incretin hormones, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP), enhance meal-stimulated insulin secretion from pancreaticβ-cells, but are inactivated by DPP-4. Diabetes and hyperglycemia increase the DPP-4 protein level and enzymatic activity in blood and tissues. In addition, multiple other functions of DPP-4 suggest that DPP-4 inhibitor, a new class of antidiabetic agents, may have pleiotropic effects. Studies have shown that DPP-4 itself is involved in the inflammatory signaling pathway, the stimulation of vascular smooth cell proliferation, and the stimulation of oxidative stress in various cells. DPP-4 inhibitor ameliorates these pathophysiologic processes and has been shown to have cardiovascular protective effects in bothin vitroandin vivoexperiments. However, in recent randomized clinical trials, DPP-4 inhibitor therapy in high risk patients with type 2 diabetes did not show cardiovascular protective effects. Some concerns on the actions of DPP-4 inhibitor include sympathetic activation and neuropeptide Y-mediated vascular responses. Further studies are required to fully characterize the cardiovascular effects of DPP-4 inhibitor.


2015 ◽  
Vol 35 (6) ◽  
pp. 2223-2232 ◽  
Author(s):  
Chaoxun Wang ◽  
Xiaopan Chen ◽  
Xiaoying Ding ◽  
Yanju He ◽  
Chengying Gu ◽  
...  

Background/Aims: Prevention of diabetes requires maintenance of a functional beta-cell mass, the postnatal growth of which depends on beta cell proliferation. Past studies have shown evidence of an effect of an incretin analogue, Exendin-4, in promoting beta cell proliferation, whereas the underlying molecular mechanisms are not completely understood. Methods: Here we studied the effects of Exendin-4 on beta cell proliferation in vitro and in vivo through analysing BrdU-incorporated beta cells. We also analysed the effects of Exendin-4 on beta cell mass in vivo, and on beta cell number in vitro. Then, we applied specific inhibitors of different signalling pathways and analysed their effects on Exendin-4-induced beta cell proliferation. Results: Exendin-4 increased beta cell proliferation in vitro and in vivo, resulting in significant increases in beta cell mass and beta cell number, respectively. Inhibition of PI3K/Akt signalling, but not inhibition of either ERK/MAPK pathway, or JNK pathway, significantly abolished the effects of Exendin-4 in promoting beta cell proliferation. Conclusion: Exendin-4 promotes beta cell proliferation via PI3k/Akt signaling pathway.


2021 ◽  
Vol 22 (4) ◽  
pp. 1813
Author(s):  
Joan Mir-Coll ◽  
Tilo Moede ◽  
Meike Paschen ◽  
Aparna Neelakandhan ◽  
Ismael Valladolid-Acebes ◽  
...  

Loss of pancreatic β-cell function is a critical event in the pathophysiology of type 2 diabetes. However, studies of its underlying mechanisms as well as the discovery of novel targets and therapies have been hindered due to limitations in available experimental models. In this study we exploited the stable viability and function of standardized human islet microtissues to develop a disease-relevant, scalable, and reproducible model of β-cell dysfunction by exposing them to long-term glucotoxicity and glucolipotoxicity. Moreover, by establishing a method for highly-efficient and homogeneous viral transduction, we were able to monitor the loss of functional β-cell mass in vivo by transplanting reporter human islet microtissues into the anterior chamber of the eye of immune-deficient mice exposed to a diabetogenic diet for 12 weeks. This newly developed in vitro model as well as the described in vivo methodology represent a new set of tools that will facilitate the study of β-cell failure in type 2 diabetes and would accelerate the discovery of novel therapeutic agents.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Amin Ardestani ◽  
Sijia Li ◽  
Karthika Annamalai ◽  
Blaz Lupse ◽  
Shirin Geravandi ◽  
...  

Abstract The loss of functional insulin-producing β-cells is a hallmark of diabetes. Mammalian sterile 20-like kinase 1 (MST1) is a key regulator of pancreatic β-cell death and dysfunction; its deficiency restores functional β-cells and normoglycemia. The identification of MST1 inhibitors represents a promising approach for a β-cell-protective diabetes therapy. Here, we identify neratinib, an FDA-approved drug targeting HER2/EGFR dual kinases, as a potent MST1 inhibitor, which improves β-cell survival under multiple diabetogenic conditions in human islets and INS-1E cells. In a pre-clinical study, neratinib attenuates hyperglycemia and improves β-cell function, survival and β-cell mass in type 1 (streptozotocin) and type 2 (obese Leprdb/db) diabetic mouse models. In summary, neratinib is a previously unrecognized inhibitor of MST1 and represents a potential β-cell-protective drug with proof-of-concept in vitro in human islets and in vivo in rodent models of both type 1 and type 2 diabetes.


Sign in / Sign up

Export Citation Format

Share Document