Neural correlates of long-term associative memory in human temporal cortex

2009 ◽  
Vol 65 ◽  
pp. S236
Author(s):  
Seiki Konishi ◽  
Ken-ichiro Yamashita ◽  
Satoshi Hirose ◽  
Akira Kunimatsu ◽  
Shigeki Aoki ◽  
...  
2021 ◽  
Vol 226 (4) ◽  
pp. 989-1006
Author(s):  
Ilenia Salsano ◽  
Valerio Santangelo ◽  
Emiliano Macaluso

AbstractPrevious studies demonstrated that long-term memory related to object-position in natural scenes guides visuo-spatial attention during subsequent search. Memory-guided attention has been associated with the activation of memory regions (the medial-temporal cortex) and with the fronto-parietal attention network. Notably, these circuits represent external locations with different frames of reference: egocentric (i.e., eyes/head-centered) in the dorsal attention network vs. allocentric (i.e., world/scene-centered) in the medial temporal cortex. Here we used behavioral measures and fMRI to assess the contribution of egocentric and allocentric spatial information during memory-guided attention. At encoding, participants were presented with real-world scenes and asked to search for and memorize the location of a high-contrast target superimposed in half of the scenes. At retrieval, participants viewed again the same scenes, now all including a low-contrast target. In scenes that included the target at encoding, the target was presented at the same scene-location. Critically, scenes were now shown either from the same or different viewpoint compared with encoding. This resulted in a memory-by-view design (target seen/unseen x same/different view), which allowed us teasing apart the role of allocentric vs. egocentric signals during memory-guided attention. Retrieval-related results showed greater search-accuracy for seen than unseen targets, both in the same and different views, indicating that memory contributes to visual search notwithstanding perspective changes. This view-change independent effect was associated with the activation of the left lateral intra-parietal sulcus. Our results demonstrate that this parietal region mediates memory-guided attention by taking into account allocentric/scene-centered information about the objects' position in the external world.


2021 ◽  
Vol 11 (6) ◽  
pp. 728
Author(s):  
Omar Singleton ◽  
Max Newlon ◽  
Andres Fossas ◽  
Beena Sharma ◽  
Susanne R. Cook-Greuter ◽  
...  

Jane Loevinger’s theory of adult development, termed ego development (1966) and more recently maturity development, provides a useful framework for understanding the development of the self throughout the lifespan. However, few studies have investigated its neural correlates. In the present study, we use structural and functional magnetic resonance imaging (MRI) to investigate the neural correlates of maturity development in contemplative practitioners and controls. Since traits possessed by individuals with higher levels of maturity development are similar to those attributed to individuals at advanced stages of contemplative practice, we chose to investigate levels of maturity development in meditation practitioners as well as matched controls. We used the Maturity Assessment Profile (MAP) to measure maturity development in a mixed sample of participants composed of 14 long-term meditators, 16 long-term yoga practitioners, and 16 demographically matched controls. We investigated the relationship between contemplative practice and maturity development with behavioral, seed-based resting state functional connectivity, and cortical thickness analyses. The results of this study indicate that contemplative practitioners possess higher maturity development compared to a matched control group, and in addition, maturity development correlates with cortical thickness in the posterior cingulate. Furthermore, we identify a brain network implicated in theory of mind, narrative, and self-referential processing, comprising the posterior cingulate cortex, dorsomedial prefrontal cortex, temporoparietal junction, and inferior frontal cortex, as a primary neural correlate.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Joseph M. Baker ◽  
Ning Liu ◽  
Xu Cui ◽  
Pascal Vrticka ◽  
Manish Saggar ◽  
...  

Abstract Researchers from multiple fields have sought to understand how sex moderates human social behavior. While over 50 years of research has revealed differences in cooperation behavior of males and females, the underlying neural correlates of these sex differences have not been explained. A missing and fundamental element of this puzzle is an understanding of how the sex composition of an interacting dyad influences the brain and behavior during cooperation. Using fNIRS-based hyperscanning in 111 same- and mixed-sex dyads, we identified significant behavioral and neural sex-related differences in association with a computer-based cooperation task. Dyads containing at least one male demonstrated significantly higher behavioral performance than female/female dyads. Individual males and females showed significant activation in the right frontopolar and right inferior prefrontal cortices, although this activation was greater in females compared to males. Female/female dyad’s exhibited significant inter-brain coherence within the right temporal cortex, while significant coherence in male/male dyads occurred in the right inferior prefrontal cortex. Significant coherence was not observed in mixed-sex dyads. Finally, for same-sex dyads only, task-related inter-brain coherence was positively correlated with cooperation task performance. Our results highlight multiple important and previously undetected influences of sex on concurrent neural and behavioral signatures of cooperation.


2015 ◽  
Vol 2 (1) ◽  
pp. 67-73 ◽  
Author(s):  
Jillian Gilmour

The author of this paper explores the implications of automatic stereotyping in relation to social cognition drawing from the pre-existing literature. The current review is focused on how stereotypes are constructed, activated, maintained, and what cognitive tools are needed in order to change them. The construction of stereotypes is looked at in respect to the stereotype validity model, facial features, the mass media, and the influence society has on perpetuating stereotypes on a global scale. The neural correlates involved in the activation of stereotypes are discussed, including the amygdala, prefrontal cortex, posterior cingulate, and anterior temporal cortex. The current review also includes ways in which cognitive processing can be slowed down to prevent the perpetuation of negative prejudices. Based on the review, future work is still required in the areas of longitudinal and diary studies that look into the long term consequences of the rapid activation and application of stereotypes.


2019 ◽  
Author(s):  
Shota Shimoda ◽  
Takaaki Ozawa ◽  
Yukio Ichitani ◽  
Kazuo Yamada

AbstractSpontaneous recognition tests, which utilize rodents’ innate tendency to explore novelty, can evaluate not only simple non-associative recognition memory but also more complex associative memory in animals. In the present study, we investigated whether the length of the object familiarization period (sample phase) improved subsequent novelty discrimination in the spontaneous object, place, and object-place-context (OPC) recognition tests in rats. In the OPC test, rats showed a significant novelty preference only when the familiarization period was 30 min but not when it was 5 min or 15 min. However, the rats exhibited a successful discrimination between the stayed and replaced objects under 15 min and 30 min familiarization period conditions in the place recognition test and between the novel and familiar objects under all conditions of 5, 15 and 30 min in the object recognition test. Our results suggest that the extension of the familiarization period improves performance in the spontaneous recognition paradigms, and a longer familiarization period is necessary for long-term associative recognition memory than for non-associative memory.


Sign in / Sign up

Export Citation Format

Share Document