Functional reorganization of locomotor kinematic synergies reflects the neuropathology in a mouse model of spinal cord injury

Author(s):  
Yuta Sato ◽  
Takahiro Kondo ◽  
Reo Shibata ◽  
Masaya Nakamura ◽  
Hideyuki Okano ◽  
...  
2021 ◽  
Vol 284 ◽  
pp. 103568
Author(s):  
Pauline Michel-Flutot ◽  
Arnaud Mansart ◽  
Therese B. Deramaudt ◽  
Isley Jesus ◽  
Kun-Ze Lee ◽  
...  

2007 ◽  
Vol 58 (2) ◽  
pp. 253-260 ◽  
Author(s):  
Joong Hee Kim ◽  
David N. Loy ◽  
Hsiao-Fang Liang ◽  
Kathryn Trinkaus ◽  
Robert E. Schmidt ◽  
...  

2015 ◽  
Vol 29 (S1) ◽  
Author(s):  
Marika Cordaro ◽  
Irene Paterniti ◽  
Rosalba Siracusa ◽  
Daniela Impellizzeri ◽  
Rosalia Crupi ◽  
...  

2016 ◽  
Vol 3 (04) ◽  
pp. 144 ◽  
Author(s):  
Hau Thi-My Lam ◽  
Minh Nguyen-Thu Tran ◽  
Khoa Anh Bui ◽  
Thao Thi-Thu Le ◽  
Khanh Hong-Thien Bui ◽  
...  

Introduction: Stem cell therapy is one of the most promising therapies for degenerative diseases and related injuries. Adipose tissue derived stem cells (ADSCs) exhibit some particular properties such as high production of paracrine factors. Indeed, ADSCs have been successfully used to treat diseases, including osteoarthritis, diabetic ulcer, etc. Methods: In this study, ADSCs were used to treat spinal cord injury (SCI) in a mouse model. Non-expanded ADSCs, from stromal vascular fractions (SVFs) isolated from both autologous and allogeneic adipose tissues, were injected into injured sites of mice at a specified dose. The SCI mouse model were generated by transection of spinal cord at vertebrae T8 - T10. After 1 week of transection, mice exhibiting completed SCI were divided into 4 groups: group 1 was control (mice without any treatment), group 2 was placebo (mice treated with platelet rich plasma (PRP)), group 3 was allogeneic SVF transplantation (mice treated with allogeneic SVFs), and group 4 was autologous SVF transplantation (mice treated with autologous SVFs). For the treatment groups, mice were transplanted with 20 µL of activated PRP or/and with 106 cells of SVF (allogeneic or autologous) into the injured position through laminectomy. The recovery of SCI was evaluated by locomotor test, sensory test and sensory-motor test at 5 weeks after transplantation. The histology of the spinal cord also was checked after 5 weeks. Results: The results showed that in all groups with PRP injected with or without SVFs, the inflammation was efficiently controlled. The glial scar as well as myelin defragmentation were clearly reduced. However, a significant improvement of BBB score was only recorded in mice transplanted with autologous SVFs. Conclusion: The results of our study show that autologous SVF transplantation in combination with PRP can be a promising therapy for SCI.


2004 ◽  
Vol 100 (1) ◽  
pp. 56-61
Author(s):  
Pierre-Yves Mure ◽  
Mark Galdo ◽  
Nathalie Compagnone

Object. The authors conducted a study to establish outcomes associated with bladder function in a mouse model of spinal cord injury (SCI) and to assess the sensitivity of these outcomes in determining the efficacy of pharmacological treatments. Methods. A mouse model of moderate contusive SCI was used. Outcome parameters included physiological, behavioral, and morphological measurements. To test the sensitivity of these outcomes, the authors used a dehydroepiandrosterone (DHEA) treatment that they had previously shown to promote neurological recovery effectively after SCI. A behavioral scale was used to identify the day at which autonomic function of the bladder was recovered. The reduction in the daily volume of urine during the period of functional recovery paralleled this scale. They then determined the day postinjury at which the functional differences between the vehicle- and DHEA-treated mice exhibited the maximal amplitude. Changes were measured in the composition of the extracellular matrix relative to collagen expression in the layer muscularis of the detrusor at this time point. They found that SCI increases the ratio of collagen type III to collagen type I in the detrusor. Moreover, in the DHEA-treated group, this ratio was similar to that demonstrated in sham-operated mice, establishing the sensitivity of this outcome to assess therapeutic benefits to the bladder function. They next examined the relationship between measurements of neurological recovery and controlled voiding by using cluster analysis. Conclusions. The authors found that early recovery of controlled voiding is predictive of motor recovery.


2019 ◽  
Vol 16 (12) ◽  
pp. 1549-1556 ◽  
Author(s):  
Po-An Tai ◽  
Yi-Ju Hsu ◽  
Wen-Ching Huang ◽  
Chun-Hao Chang ◽  
Yi-Hsun Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document