scholarly journals Strain differences in the extent of brain injury in mice after tetramethylenedisulfotetramine-induced status epilepticus

2021 ◽  
Vol 87 ◽  
pp. 43-50
Author(s):  
Jonas J. Calsbeek ◽  
Eduardo A. González ◽  
Casey A. Boosalis ◽  
Dorota Zolkowska ◽  
Donald A. Bruun ◽  
...  
2018 ◽  
Vol 40 (5-6) ◽  
pp. 490-496 ◽  
Author(s):  
R. Ann Sheldon ◽  
Christine Windsor ◽  
Donna M. Ferriero

Neonatal hypoxic-ischemic brain injury is commonly studied by means of the Vannucci procedure in mice or rats (unilateral common carotid artery occlusion followed by hypoxia). Previously, we modified the postnatal day 7 (P7) rat procedure for use in mice, and later demonstrated that genetic strain strongly influences the degree of brain injury in the P7 mouse model of hypoxia-ischemia (HI). Recently, the P9 or P10 mouse brain was recognized as the developmental equivalent of a term neonatal human brain, rather than P7. Consequently, the Vannucci procedure has again been modified, and a commonly used protocol employs 10% oxygen for 50 min in C57Bl/6 mice. Strain differences have yet to be described for the P9/P10 mouse model. In order to determine if the strain differences we previously reported in the P7 mouse model are present in the P9 model, we compared 2 commonly used strains, CD1 and C57Bl/6J, in both the P7 (carotid ligation [in this case, right] followed by exposure to 8% oxygen for 30 min) and P9 (carotid ligation [in this case left] followed by exposure to 10% oxygen) models of HI. Experiments using the P7 model were performed in 2001–2012 and those using the P9 model were performed in 2012–2016. Five to seven days after the HI procedure, mice were perfused with 4% paraformaldehyde, their brains were sectioned on a Vibratome (50 µm) and alternate sections were stained with Perl’s iron stain or cresyl violet. Brain sections were examined microscopically and scored for the degree of injury. Since brains in the P7 group had been scored previously with a slightly different system, they were reanalyzed using our current scoring system which scores injury in 11 regions: the anterior, middle, and posterior cortex; the anterior, middle, and posterior striatum; CA1, CA2, CA3, and the dentate gyrus of the hippocampus and thalamus, on a scale from 0 (none) to 3 (cystic infarct) for a total score of 0–33. Brains in the P9 group were scored with the same system. Given the same insult, the P7 CD1 mice had greater injury than the C57Bl/6J mice, which agrees with our previous findings. The P9 CD1 mice also had greater injury than the C57Bl/6J mice. This study confirms that CD1 mice are more susceptible to injury than C57Bl/6J mice and that strain selection is important when using mouse models of HI.


2019 ◽  
Vol 36 (11) ◽  
pp. 1890-1907 ◽  
Author(s):  
Pedro Andrade ◽  
Ivette Banuelos-Cabrera ◽  
Niina Lapinlampi ◽  
Tomi Paananen ◽  
Robert Ciszek ◽  
...  

2019 ◽  
Vol 21 (1) ◽  
pp. 181 ◽  
Author(s):  
Maheedhar Kodali ◽  
Olagide W. Castro ◽  
Dong-Ki Kim ◽  
Alicia Thomas ◽  
Bing Shuai ◽  
...  

Extracellular vesicles (EVs) derived from human bone marrow mesenchymal stem cells (hMSCs) have great promise as biologics to treat neurological and neurodegenerative conditions due to their robust antiinflammatory and neuroprotective properties. Besides, intranasal (IN) administration of EVs has caught much attention because the procedure is noninvasive, amenable for repetitive dispensation, and leads to a quick penetration of EVs into multiple regions of the forebrain. Nonetheless, it is unknown whether brain injury-induced signals are essential for the entry of IN-administered EVs into different brain regions. Therefore, in this study, we investigated the distribution of IN-administered hMSC-derived EVs into neurons and microglia in the intact and status epilepticus (SE) injured rat forebrain. Ten billion EVs labeled with PKH26 were dispensed unilaterally into the left nostril of naïve rats, and rats that experienced two hours of kainate-induced SE. Six hours later, PKH26 + EVs were quantified from multiple forebrain regions using serial brain sections processed for different neural cell markers and confocal microscopy. Remarkably, EVs were seen bilaterally in virtually all regions of intact and SE-injured forebrain. The percentage of neurons incorporating EVs were comparable for most forebrain regions. However, in animals that underwent SE, a higher percentage of neurons incorporated EVs in the hippocampal CA1 subfield and the entorhinal cortex, the regions that typically display neurodegeneration after SE. In contrast, the incorporation of EVs by microglia was highly comparable in every region of the forebrain measured. Thus, unilateral IN administration of EVs is efficient for delivering EVs bilaterally into neurons and microglia in multiple regions in the intact or injured forebrain. Furthermore, incorporation of EVs by neurons is higher in areas of brain injury, implying that injury-related signals likely play a role in targeting of EVs into neurons, which may be beneficial for EV therapy in various neurodegenerative conditions including traumatic brain injury, stroke, multiple sclerosis, and Alzheimer’s disease.


Author(s):  
Martin Beed ◽  
Richard Sherman ◽  
Ravi Mahajan

Decreased consciousnessSeizures and status epilepticusStroke/thromboembolic strokeIntracerebral haemorrhageSubarachnoid haemorrhageTraumatic brain injuryRaised intracranial pressureMeningitis and encephalitisAgitation/confusion/aggressionAlcohol withdrawalNeuromuscular weakness and paralysisGuillain–Barré syndromeMyasthenia gravis↓consciousness occurs in many diseases requiring admission to intensive care, and is often a cause for admission in its own right. Changes in neurological state may be related to intracranial pathology, or may occur in response to respiratory, circulatory, or metabolic disorders....


2018 ◽  
Vol 05 (02) ◽  
pp. 068-074
Author(s):  
Laxmi Khanna ◽  
Nandini Agarwal ◽  
Sabita Kandel

Abstract Introduction Periodic discharges are now known as the ictal–interictal continuum and represent ongoing injury in acute or chronic neurological illnesses. Objective The aim of our study was to identify periodic discharges in patients who have undergone continuous bedside electroencephalography (EEG) monitoring and to classify the EEG according to the current American Clinical Neurophysiology Society terminology. Materials and Methods The continuous bedside EEG records of intensive care patients admitted from August 2017 to July 2018 were analyzed. The clinical spectrum, the treatment, and outcome of each of these patients were monitored. Results Fifty cases of periodic discharges (11 children, 39 adults) were identified over 1 year from 2017 to 2018. The clinical presentation included 32% seizures, 16% status epilepticus, 20% coma, 16% fever with altered sensorium, 8% abnormal behavior, 4% strokes, and 4% traumatic brain injury. The diagnosis was 20% autoimmune encephalitis, 8% herpes encephalitis, 20% multiorgan failure, 4% traumatic brain injury, 16% status epilepticus, 16% posthypoxic encephalopathy, 4% strokes, 4% intracerebral bleeds, 4% meningitis, and 4% severe dementia. Lateralized periodic discharges were identified in 20%, bilateral independent periodic discharges in 20%, and generalized periodic discharges in 60%. Fifty-six percent patients recovered with residual neurological deficits and 44% succumbed to their illness. Conclusions Continuous bedside EEG monitoring has revolutionized the approach to seizures in critically ill patients. Despite a vigilant approach and diligent diagnosis of these abnormal rhythms, the mortality rate was 20% in patients with lateralized periodic discharges and 60% with bilateral and generalized periodic discharges (p ≤ 0.05).


1999 ◽  
Vol 91 (5) ◽  
pp. 750-760 ◽  
Author(s):  
Paul M. Vespa ◽  
Marc R. Nuwer ◽  
Valeriy Nenov ◽  
Elisabeth Ronne-Engstrom ◽  
David A. Hovda ◽  
...  

Object. The early pathophysiological features of traumatic brain injury observed in the intensive care unit (ICU) have been described in terms of altered cerebral blood flow, altered brain metabolism, and neurochemical excitotoxicity. Seizures occur in animal models of brain injury and in human brain injury. Previous studies of posttraumatic seizures in humans have been based principally on clinical observations without a systematic approach to electroencephalographic (EEG) recording of seizures. The purpose of this study was to determine prospectively the incidence of convulsive and nonconvulsive seizures by using continuous EEG monitoring in patients in the ICU during the initial 14 days postinjury.Methods. Ninety-four patients with moderate-to-severe brain injuries underwent continuous EEG monitoring beginning at admission to the ICU (mean delay 9.6 ± 5.4 hours) and extending up to 14 days postinjury. Convulsive and nonconvulsive seizures occurred in 21 (22%) of the 94 patients, with six of them displaying status epilepticus. In more than half of the patients (52%) the seizures were nonconvulsive and were diagnosed on the basis of EEG studies alone. All six patients with status epilepticus died, compared with a mortality rate of 24% (18 of 73) in the nonseizure group (p < 0.001). The patients with status epilepticus had a shorter mean length of stay (9.14 ± 5.9 days compared with 14 ± 9 days [t-test, p < 0.03]). Seizures occurred despite initiation of prophylactic phenytoin on admission to the emergency room, with maintenance at mean levels of 16.6 ± 2.8 mg/dl. No differences in key prognostic factors (such as the Glasgow Coma Scale score, early hypoxemia, early hypotension, or 1-month Glasgow Outcome Scale score) were found between the patients with seizures and those without.Conclusions. Seizures occur in more than one in five patients during the 1st week after moderate-to-severe brain injury and may play a role in the pathobiological conditions associated with brain injury.


Author(s):  
Shivanjali Sood ◽  
Chandrika Azad ◽  
Jasbinder Kaur ◽  
Pankaj Kumar ◽  
Vishal Guglani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document