N-type Ca2+ channels are affected by full-length mutant huntingtin expression in a mouse model of Huntington's disease

2017 ◽  
Vol 55 ◽  
pp. 1-10 ◽  
Author(s):  
Flavia R. Silva ◽  
Artur S. Miranda ◽  
Rebeca P.M. Santos ◽  
Isabella G. Olmo ◽  
Gerald W. Zamponi ◽  
...  
Neuron ◽  
1999 ◽  
Vol 23 (1) ◽  
pp. 181-192 ◽  
Author(s):  
J.Graeme Hodgson ◽  
Nadia Agopyan ◽  
Claire-Anne Gutekunst ◽  
Blair R Leavitt ◽  
Fred LePiane ◽  
...  

2021 ◽  
pp. 1-13
Author(s):  
Karen A. Sap ◽  
Arzu Tugce Guler ◽  
Aleksandra Bury ◽  
Dick Dekkers ◽  
Jeroen A.A. Demmers ◽  
...  

Background: Huntington’s disease is a neurodegenerative disorder caused by a CAG expansion in the huntingtin gene, resulting in a polyglutamine expansion in the ubiquitously expressed mutant huntingtin protein. Objective: Here we set out to identify proteins interacting with the full-length wild-type and mutant huntingtin protein in the mice cortex brain region to understand affected biological processes in Huntington’s disease pathology. Methods: Full-length huntingtin with 20 and 140 polyQ repeats were formaldehyde-crosslinked and isolated via their N-terminal Flag-tag from 2-month-old mice brain cortex. Interacting proteins were identified and quantified by label-free liquid chromatography-mass spectrometry (LC-MS/MS). Results: We identified 30 interactors specific for wild-type huntingtin, 14 interactors specific for mutant huntingtin and 14 shared interactors that interacted with both wild-type and mutant huntingtin, including known interactors such as F8a1/Hap40. Syt1, Ykt6, and Snap47, involved in vesicle transport and exocytosis, were among the proteins that interacted specifically with wild-type huntingtin. Various other proteins involved in energy metabolism and mitochondria were also found to associate predominantly with wild-type huntingtin, whereas mutant huntingtin interacted with proteins involved in translation including Mapk3, Eif3h and Eef1a2. Conclusion: Here we identified both shared and specific interactors of wild-type and mutant huntingtin, which are involved in different biological processes including exocytosis, vesicle transport, translation and metabolism. These findings contribute to the understanding of the roles that wild-type and mutant huntingtin play in a variety of cellular processes both in healthy conditions and Huntington’s disease pathology.


PLoS Currents ◽  
2012 ◽  
Vol 4 ◽  
pp. e4fd085bfc9973 ◽  
Author(s):  
Christian Landles ◽  
Andreas Weiss ◽  
Sophie Franklin ◽  
David Howland ◽  
Gill Bates

2014 ◽  
Vol 20 (5) ◽  
pp. 536-541 ◽  
Author(s):  
Nan Wang ◽  
Michelle Gray ◽  
Xiao-Hong Lu ◽  
Jeffrey P Cantle ◽  
Sandra M Holley ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document