Identifying spatial relationships in neural processing using a multiple classification approach

NeuroImage ◽  
2004 ◽  
Vol 23 (1) ◽  
pp. 260-268 ◽  
Author(s):  
F. DuBois Bowman ◽  
Rajan Patel
2019 ◽  
Vol 67 (1) ◽  
pp. 33 ◽  
Author(s):  
Wen Jin Li ◽  
Shuang Shuang Liu ◽  
Jin Hua Li ◽  
Ru Lan Zhang ◽  
Ka Zhuo Cai Rang ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Zhongmei Zhou

A good classifier can correctly predict new data for which the class label is unknown, so it is important to construct a high accuracy classifier. Hence, classification techniques are much useful in ubiquitous computing. Associative classification achieves higher classification accuracy than some traditional rule-based classification approaches. However, the approach also has two major deficiencies. First, it generates a very large number of association classification rules, especially when the minimum support is set to be low. It is difficult to select a high quality rule set for classification. Second, the accuracy of associative classification depends on the setting of the minimum support and the minimum confidence. In comparison with associative classification, some improved traditional rule-based classification approaches often produce a classification rule set that plays an important role in prediction. Thus, some improved traditional rule-based classification approaches not only achieve better efficiency than associative classification but also get higher accuracy. In this paper, we put forward a new classification approach called CMR (classification based on multiple classification rules). CMR combines the advantages of both associative classification and rule-based classification. Our experimental results show that CMR gets higher accuracy than some traditional rule-based classification methods.


2020 ◽  
Vol 31 (2) ◽  
pp. 81-86
Author(s):  
Wido Nager ◽  
Tilla Franke ◽  
Tobias Wagner-Altendorf ◽  
Eckart Altenmüller ◽  
Thomas F. Münte

Abstract. Playing a musical instrument professionally has been shown to lead to structural and functional neural adaptations, making musicians valuable subjects for neuroplasticity research. Here, we follow the hypothesis that specific musical demands further shape neural processing. To test this assumption, we subjected groups of professional drummers, professional woodwind players, and nonmusicians to pure tone sequences and drum sequences in which infrequent anticipations of tones or drum beats had been inserted. Passively listening to these sequences elicited a mismatch negativity to the temporally deviant stimuli which was greater in the musicians for tone series and particularly large for drummers for drum sequences. In active listening conditions drummers more accurately and more quickly detected temporally deviant stimuli.


2017 ◽  
Vol 126 (5) ◽  
pp. 540-551 ◽  
Author(s):  
Brittany Collins ◽  
Lauren Breithaupt ◽  
Jennifer E. McDowell ◽  
L. Stephen Miller ◽  
James Thompson ◽  
...  

2007 ◽  
Vol 34 (S 2) ◽  
Author(s):  
C Mohr ◽  
I Mangels ◽  
C Helmchen

2020 ◽  
Vol 140 (7) ◽  
pp. 762-768
Author(s):  
Yoshiki Aizawa ◽  
Nina Pilyugina ◽  
Akihiko Tsukahara ◽  
Keita Tanaka

2019 ◽  
Author(s):  
Zacharias Kinney ◽  
Viraj Kirinda ◽  
Scott Hartley

<p>Higher-order structure in abiotic foldamer systems represents an important but largely unrealized goal. As one approach to this challenge, covalent assembly can be used to assemble macrocycles with foldamer subunits in well-defined spatial relationships. Such systems have previously been shown to exhibit self-sorting, new folding motifs, and dynamic stereoisomerism, yet there remain important questions about the interplay between folding and macrocyclization and the effect of structural confinement on folding behavior. Here, we explore the dynamic covalent assembly of extended <i>ortho</i>-phenylenes (hexamer and decamer) with rod-shaped linkers. Characteristic <sup>1</sup>H chemical shift differences between cyclic and acyclic systems can be compared with computational conformer libraries to determine the folding states of the macrocycles. We show that the bite angle provides a measure of the fit of an <i>o</i>-phenylene conformer within a shape-persistent macrocycle, affecting both assembly and ultimate folding behavior. For the <i>o</i>-phenylene hexamer, the bite angle and conformer stability work synergistically to direct assembly toward triangular [3+3] macrocycles of well-folded oligomers. For the decamer, the energetic accessibility of conformers with small bite angles allows [2+2] macrocycles to be formed as the predominant species. In these systems, the <i>o</i>-phenylenes are forced into unusual folding states, preferentially adopting a backbone geometry with distinct helical blocks of opposite handedness. The results show that simple geometric restrictions can be used to direct foldamers toward increasingly complex geometries.</p>


2019 ◽  
Author(s):  
Zacharias Kinney ◽  
Viraj Kirinda ◽  
Scott Hartley

<p>Higher-order structure in abiotic foldamer systems represents an important but largely unrealized goal. As one approach to this challenge, covalent assembly can be used to assemble macrocycles with foldamer subunits in well-defined spatial relationships. Such systems have previously been shown to exhibit self-sorting, new folding motifs, and dynamic stereoisomerism, yet there remain important questions about the interplay between folding and macrocyclization and the effect of structural confinement on folding behavior. Here, we explore the dynamic covalent assembly of extended <i>ortho</i>-phenylenes (hexamer and decamer) with rod-shaped linkers. Characteristic <sup>1</sup>H chemical shift differences between cyclic and acyclic systems can be compared with computational conformer libraries to determine the folding states of the macrocycles. We show that the bite angle provides a measure of the fit of an <i>o</i>-phenylene conformer within a shape-persistent macrocycle, affecting both assembly and ultimate folding behavior. For the <i>o</i>-phenylene hexamer, the bite angle and conformer stability work synergistically to direct assembly toward triangular [3+3] macrocycles of well-folded oligomers. For the decamer, the energetic accessibility of conformers with small bite angles allows [2+2] macrocycles to be formed as the predominant species. In these systems, the <i>o</i>-phenylenes are forced into unusual folding states, preferentially adopting a backbone geometry with distinct helical blocks of opposite handedness. The results show that simple geometric restrictions can be used to direct foldamers toward increasingly complex geometries.</p>


Sign in / Sign up

Export Citation Format

Share Document