scholarly journals The representational dynamics of visual objects in rapid serial visual processing streams

NeuroImage ◽  
2019 ◽  
Vol 188 ◽  
pp. 668-679 ◽  
Author(s):  
Tijl Grootswagers ◽  
Amanda K. Robinson ◽  
Thomas A. Carlson
2015 ◽  
Vol 27 (4) ◽  
pp. 832-841 ◽  
Author(s):  
Amanda K. Robinson ◽  
Judith Reinhard ◽  
Jason B. Mattingley

Sensory information is initially registered within anatomically and functionally segregated brain networks but is also integrated across modalities in higher cortical areas. Although considerable research has focused on uncovering the neural correlates of multisensory integration for the modalities of vision, audition, and touch, much less attention has been devoted to understanding interactions between vision and olfaction in humans. In this study, we asked how odors affect neural activity evoked by images of familiar visual objects associated with characteristic smells. We employed scalp-recorded EEG to measure visual ERPs evoked by briefly presented pictures of familiar objects, such as an orange, mint leaves, or a rose. During presentation of each visual stimulus, participants inhaled either a matching odor, a nonmatching odor, or plain air. The N1 component of the visual ERP was significantly enhanced for matching odors in women, but not in men. This is consistent with evidence that women are superior in detecting, discriminating, and identifying odors and that they have a higher gray matter concentration in olfactory areas of the OFC. We conclude that early visual processing is influenced by olfactory cues because of associations between odors and the objects that emit them, and that these associations are stronger in women than in men.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Rose Bruffaerts ◽  
◽  
Lorraine K. Tyler ◽  
Meredith Shafto ◽  
Kamen A. Tsvetanov ◽  
...  

Abstract Making sense of the external world is vital for multiple domains of cognition, and so it is crucial that object recognition is maintained across the lifespan. We investigated age differences in perceptual and conceptual processing of visual objects in a population-derived sample of 85 healthy adults (24–87 years old) by relating measures of object processing to cognition across the lifespan. Magnetoencephalography (MEG) was recorded during a picture naming task to provide a direct measure of neural activity, that is not confounded by age-related vascular changes. Multiple linear regression was used to estimate neural responsivity for each individual, namely the capacity to represent visual or semantic information relating to the pictures. We find that the capacity to represent semantic information is linked to higher naming accuracy, a measure of task-specific performance. In mature adults, the capacity to represent semantic information also correlated with higher levels of fluid intelligence, reflecting domain-general performance. In contrast, the latency of visual processing did not relate to measures of cognition. These results indicate that neural responsivity measures relate to naming accuracy and fluid intelligence. We propose that maintaining neural responsivity in older age confers benefits in task-related and domain-general cognitive processes, supporting the brain maintenance view of healthy cognitive ageing.


Author(s):  
Yoram Bonneh

Motion-induced blindness (MIB) is a phenomenon characterized by “visual disappearance” in which relatively small but salient visual objects may disappear from one’s awareness intermittently for several seconds when embedded within a moving pattern. It is a compelling example of multistable perception in which physically invariant stimulation leads to fluctuations in perception. The interest in MIB stems from its potential use in studying visual processing outside the locus of awareness and the neural correlates of consciousness. Current studies of MIB provide evidence against low-level suppression of the visual signal and demonstrate residual processing of the invisible. This chapter explores these and related concepts.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Sina Tafazoli ◽  
Houman Safaai ◽  
Gioia De Franceschi ◽  
Federica Bianca Rosselli ◽  
Walter Vanzella ◽  
...  

Rodents are emerging as increasingly popular models of visual functions. Yet, evidence that rodent visual cortex is capable of advanced visual processing, such as object recognition, is limited. Here we investigate how neurons located along the progression of extrastriate areas that, in the rat brain, run laterally to primary visual cortex, encode object information. We found a progressive functional specialization of neural responses along these areas, with: (1) a sharp reduction of the amount of low-level, energy-related visual information encoded by neuronal firing; and (2) a substantial increase in the ability of both single neurons and neuronal populations to support discrimination of visual objects under identity-preserving transformations (e.g., position and size changes). These findings strongly argue for the existence of a rat object-processing pathway, and point to the rodents as promising models to dissect the neuronal circuitry underlying transformation-tolerant recognition of visual objects.


2018 ◽  
Author(s):  
Tijl Grootswagers ◽  
Amanda K. Robinson ◽  
Thomas A. Carlson

AbstractIn our daily lives, we are bombarded with a stream of rapidly changing visual input. Humans have the remarkable capacity to detect and identify objects in fast-changing scenes. Yet, when studying brain representations, stimuli are generally presented in isolation. Here, we studied the dynamics of human vision using a combination of fast stimulus presentation rates, electroencephalography and multivariate decoding analyses. Using a presentation rate of 5 images per second, we obtained the representational structure of a large number of stimuli, and showed the emerging abstract categorical organisation of this structure. Furthermore, we could separate the temporal dynamics of perceptual processing from higher-level target selection effects. In a second experiment, we used the same paradigm at 20Hz to show that shorter image presentation limits the categorical abstraction of object representations. Our results show that applying multivariate pattern analysis to every image in rapid serial visual processing streams has unprecedented potential for studying the temporal dynamics of the structure of representations in the human visual system.


2019 ◽  
Author(s):  
Thomas Hörberg ◽  
Maria Larsson ◽  
Ingrid Ekström ◽  
Camilla Sandöy ◽  
Jonas Olofsson

Visual stimuli often dominate non-visual stimuli during multisensory perception, and evidence suggests higher cognitive processes prioritize visual over non-visual stimuli during divided attention. Visual stimuli may therefore have privileged access to higher mental processing resources, relative to other senses, and should be disproportionally distracting when processing incongruent cross-sensory stimuli. We tested this assumption by comparing visual processing with olfaction, a “primitive” sensory channel that detects potentially hazardous chemicals by alerting attention. Behavioral and event-related brain potentials (ERPs) were assessed in a bimodal object categorization task with congruent or incongruent odor-picture pairings and a delayed auditory response target. For congruent pairings, accuracy was higher for visual compared to olfactory decisions. However, for incongruent pairings, reaction times (RTs) were faster for olfactory decisions, suggesting incongruent odors interfered more with visual decisions, thereby showing an “olfactory dominance effect”. Categorization of incongruent pairings engendered a late “slow wave” ERP effect. Importantly, this effect had a later amplitude peak and longer latency during visual decisions, likely reflecting additional categorization effort for visual stimuli. In sum, contrary to what might be inferred from theories of ”visual dominance”, incongruent odors may in fact uniquely attract mental processing resources during perceptual incongruence.


2016 ◽  
Vol 113 (13) ◽  
pp. 3693-3698 ◽  
Author(s):  
John M. Gaspar ◽  
Gregory J. Christie ◽  
David J. Prime ◽  
Pierre Jolicœur ◽  
John J. McDonald

According to contemporary accounts of visual working memory (vWM), the ability to efficiently filter relevant from irrelevant information contributes to an individual’s overall vWM capacity. Although there is mounting evidence for this hypothesis, very little is known about the precise filtering mechanism responsible for controlling access to vWM and for differentiating low- and high-capacity individuals. Theoretically, the inefficient filtering observed in low-capacity individuals might be specifically linked to problems enhancing relevant items, suppressing irrelevant items, or both. To find out, we recorded neurophysiological activity associated with attentional selection and active suppression during a competitive visual search task. We show that high-capacity individuals actively suppress salient distractors, whereas low-capacity individuals are unable to suppress salient distractors in time to prevent those items from capturing attention. These results demonstrate that individual differences in vWM capacity are associated with the timing of a specific attentional control operation that suppresses processing of salient but irrelevant visual objects and restricts their access to higher stages of visual processing.


2021 ◽  
Author(s):  
Takaya Ogasawara ◽  
Fatih Sogukpinar ◽  
Kaining Zhang ◽  
Yang-Yang Feng ◽  
Julia Pai ◽  
...  

Humans and other primates interact with the world by observing and exploring visual objects. In particular, they often seek out the opportunities to view novel objects that they have never seen before, even when they have no extrinsic primary reward value. However, despite the importance of novel visual objects in our daily life, we currently lack an understanding of how primate brain circuits control the motivation to seek out novelty. We found that novelty-seeking is regulated by a small understudied subcortical region, the zona incerta (ZI). In a task in which monkeys made eye movements to familiar objects to obtain the opportunity to view novel objects, many ZI neurons were preferentially activated by predictions of future novel objects and displayed burst excitations before gaze shifts to gain access to novel objects. Low intensity electrical stimulation of ZI facilitated gaze shifts, while inactivations of ZI reduced novelty-seeking. Surprisingly, additional experiments showed that this ZI-dependent novelty seeking behavior is not regulated by canonical neural circuitry for reward seeking. The habenula-dopamine pathway, known to reflect reward predictions that control reward seeking, was relatively inactive during novelty-seeking behavior in which novelty had no extrinsic reward value. Instead, high channel-count electrophysiological experiments and anatomical tracing identified a prominent source of control signals for novelty seeking in the anterior ventral medial temporal cortex (AVMTC), a brain region known to be crucially involved in visual processing and object memory. In addition to their well-known function in signaling the novelty or familiarity of objects in the current environment, AVMTC neurons reflected the predictions of future novel objects, akin to the way neurons in reward-circuitry predict future rewards in order to control reward-seeking. Our data uncover a network of primate brain areas that regulate novelty-seeking. The behavioral and neural distinctions between novelty-seeking and reward-processing highlight how the brain can accomplish behavioral flexibility, providing a mechanism to explore novel objects.


2019 ◽  
Author(s):  
Amarender R. Bogadhi ◽  
Leor N. Katz ◽  
Anil Bollimunta ◽  
David A. Leopold ◽  
Richard J. Krauzlis

AbstractThe evolution of the primate brain is marked by a dramatic increase in the number of neocortical areas that process visual information 1. This cortical expansion supports two hallmarks of high-level primate vision – the ability to selectively attend to particular visual features 2 and the ability to recognize a seemingly limitless number of complex visual objects 3. Given their prominent roles in high-level vision for primates, it is commonly assumed that these cortical processes supersede the earlier versions of these functions accomplished by the evolutionarily older brain structures that lie beneath the cortex. Contrary to this view, here we show that the superior colliculus (SC), a midbrain structure conserved across all vertebrates 4, is necessary for the normal expression of attention-related modulation and object selectivity in a newly identified region of macaque temporal cortex. Using a combination of psychophysics, causal perturbations and fMRI, we identified a localized region in the temporal cortex that is functionally dependent on the SC. Targeted electrophysiological recordings in this cortical region revealed neurons with strong attention-related modulation that was markedly reduced during attention deficits caused by SC inactivation. Many of these neurons also exhibited selectivity for particular visual objects, and this selectivity was also reduced during SC inactivation. Thus, the SC exerts a causal influence on high-level visual processing in cortex at a surprisingly late stage where attention and object selectivity converge, perhaps determined by the elemental forms of perceptual processing the SC has supported since before there was a neocortex.


Sign in / Sign up

Export Citation Format

Share Document