scholarly journals Incongruent odors suppress perceptual categorization of visual objects: Behavioral and ERP evidence

2019 ◽  
Author(s):  
Thomas Hörberg ◽  
Maria Larsson ◽  
Ingrid Ekström ◽  
Camilla Sandöy ◽  
Jonas Olofsson

Visual stimuli often dominate non-visual stimuli during multisensory perception, and evidence suggests higher cognitive processes prioritize visual over non-visual stimuli during divided attention. Visual stimuli may therefore have privileged access to higher mental processing resources, relative to other senses, and should be disproportionally distracting when processing incongruent cross-sensory stimuli. We tested this assumption by comparing visual processing with olfaction, a “primitive” sensory channel that detects potentially hazardous chemicals by alerting attention. Behavioral and event-related brain potentials (ERPs) were assessed in a bimodal object categorization task with congruent or incongruent odor-picture pairings and a delayed auditory response target. For congruent pairings, accuracy was higher for visual compared to olfactory decisions. However, for incongruent pairings, reaction times (RTs) were faster for olfactory decisions, suggesting incongruent odors interfered more with visual decisions, thereby showing an “olfactory dominance effect”. Categorization of incongruent pairings engendered a late “slow wave” ERP effect. Importantly, this effect had a later amplitude peak and longer latency during visual decisions, likely reflecting additional categorization effort for visual stimuli. In sum, contrary to what might be inferred from theories of ”visual dominance”, incongruent odors may in fact uniquely attract mental processing resources during perceptual incongruence.

2020 ◽  
Vol 30 (7) ◽  
pp. 4220-4237 ◽  
Author(s):  
Thomas Hörberg ◽  
Maria Larsson ◽  
Ingrid Ekström ◽  
Camilla Sandöy ◽  
Peter Lundén ◽  
...  

Abstract Visual stimuli often dominate nonvisual stimuli during multisensory perception. Evidence suggests higher cognitive processes prioritize visual over nonvisual stimuli during divided attention. Visual stimuli should thus be disproportionally distracting when processing incongruent cross-sensory stimulus pairs. We tested this assumption by comparing visual processing with olfaction, a “primitive” sensory channel that detects potentially hazardous chemicals by alerting attention. Behavioral and event-related brain potentials (ERPs) were assessed in a bimodal object categorization task with congruent or incongruent odor–picture pairings and a delayed auditory target that indicated whether olfactory or visual cues should be categorized. For congruent pairings, accuracy was higher for visual compared to olfactory decisions. However, for incongruent pairings, reaction times (RTs) were faster for olfactory decisions. Behavioral results suggested that incongruent odors interfered more with visual decisions, thereby providing evidence for an “olfactory dominance” effect. Categorization of incongruent pairings engendered a late “slow wave” ERP effect. Importantly, this effect had a later amplitude peak and longer latency during visual decisions, likely reflecting additional categorization effort for visual stimuli in the presence of incongruent odors. In sum, contrary to what might be inferred from theories of “visual dominance,” incongruent odors may in fact uniquely attract mental processing resources during perceptual incongruence.


2021 ◽  
Vol 11 (3) ◽  
pp. 343
Author(s):  
Chiara Martolini ◽  
Giulia Cappagli ◽  
Sabrina Signorini ◽  
Monica Gori

Research has shown that the ability to integrate complementary sensory inputs into a unique and coherent percept based on spatiotemporal coincidence can improve perceptual precision, namely multisensory integration. Despite the extensive research on multisensory integration, very little is known about the principal mechanisms responsible for the spatial interaction of multiple sensory stimuli. Furthermore, it is not clear whether the size of spatialized stimulation can affect unisensory and multisensory perception. The present study aims to unravel whether the stimulated area’s increase has a detrimental or beneficial effect on sensory threshold. Sixteen typical adults were asked to discriminate unimodal (visual, auditory, tactile), bimodal (audio-visual, audio-tactile, visuo-tactile) and trimodal (audio-visual-tactile) stimulation produced by one, two, three or four devices positioned on the forearm. Results related to unisensory conditions indicate that the increase of the stimulated area has a detrimental effect on auditory and tactile accuracy and visual reaction times, suggesting that the size of stimulated areas affects these perceptual stimulations. Concerning multisensory stimulation, our findings indicate that integrating auditory and tactile information improves sensory precision only when the stimulation area is augmented to four devices, suggesting that multisensory interaction is occurring for expanded spatial areas.


2019 ◽  
Vol 33 (2) ◽  
pp. 109-118
Author(s):  
Andrés Antonio González-Garrido ◽  
Jacobo José Brofman-Epelbaum ◽  
Fabiola Reveca Gómez-Velázquez ◽  
Sebastián Agustín Balart-Sánchez ◽  
Julieta Ramos-Loyo

Abstract. It has been generally accepted that skipping breakfast adversely affects cognition, mainly disturbing the attentional processes. However, the effects of short-term fasting upon brain functioning are still unclear. We aimed to evaluate the effect of skipping breakfast on cognitive processing by studying the electrical brain activity of young healthy individuals while performing several working memory tasks. Accordingly, the behavioral results and event-related brain potentials (ERPs) of 20 healthy university students (10 males) were obtained and compared through analysis of variances (ANOVAs), during the performance of three n-back working memory (WM) tasks in two morning sessions on both normal (after breakfast) and 12-hour fasting conditions. Significantly fewer correct responses were achieved during fasting, mainly affecting the higher WM load task. In addition, there were prolonged reaction times with increased task difficulty, regardless of breakfast intake. ERP showed a significant voltage decrement for N200 and P300 during fasting, while the amplitude of P200 notably increased. The results suggest skipping breakfast disturbs earlier cognitive processing steps, particularly attention allocation, early decoding in working memory, and stimulus evaluation, and this effect increases with task difficulty.


2016 ◽  
Vol 30 (3) ◽  
pp. 102-113 ◽  
Author(s):  
Chun-Hao Wang ◽  
Chun-Ming Shih ◽  
Chia-Liang Tsai

Abstract. This study aimed to assess whether brain potentials have significant influences on the relationship between aerobic fitness and cognition. Behavioral and electroencephalographic (EEG) data was collected from 48 young adults when performing a Posner task. Higher aerobic fitness is related to faster reaction times (RTs) along with greater P3 amplitude and shorter P3 latency in the valid trials, after controlling for age and body mass index. Moreover, RTs were selectively related to P3 amplitude rather than P3 latency. Specifically, the bootstrap-based mediation model indicates that P3 amplitude mediates the relationship between fitness level and attention performance. Possible explanations regarding the relationships among aerobic fitness, cognitive performance, and brain potentials are discussed.


Author(s):  
Bruno and

Synaesthesia is a curious anomaly of multisensory perception. When presented with stimulation in one sensory channel, in addition to the percept usually associated with that channel (inducer) a true synaesthetic experiences a second percept in another perceptual modality (concurrent). Although synaesthesia is not pathological, true synaesthetes are relatively rare and their synaesthetic associations tend to be quite idiosyncratic. For this reason, studying synaesthesia is difficult, but exciting new experimental results are beginning to clarify what makes the brain of synaesthetes special and the mechanisms that may produce the condition. Even more importantly, the related phenomenon known as ‘natural’ crossmodal associations is instead experienced by everyone, providing another useful domain for studying multisensory interactions with important implications for understanding our preferences for products in terms of spontaneously evoked associations, as well as for choosing appropriate names, labels, and packaging in marketing applications.


1954 ◽  
Vol 100 (419) ◽  
pp. 462-477 ◽  
Author(s):  
K. R. L. Hall ◽  
E. Stride

A number of studies on reaction time (R.T.) latency to visual and auditory stimuli in psychotic patients has been reported since the first investigations on the personal equation were carried out. The general trends from the work up to 1943 are well summarized by Hunt (1944), while Granger's (1953) review of “Personality and visual perception” contains a summary of the studies on R.T. to visual stimuli.


2018 ◽  
Vol 1 ◽  
pp. 205920431877823 ◽  
Author(s):  
Linda Becker

Musical expertise can lead to neural plasticity in specific cognitive domains (e.g., in auditory music perception). However, not much is known about whether the visual perception of simple musical symbols (e.g., notes) already differs between musicians and non-musicians. This was the aim of the present study. Therefore, the Familiarity Effect (FE) – an effect which occurs quite early during visual processing and which is based on prior knowledge or expertise – was investigated. The FE describes the phenomenon that it is easier to find an unfamiliar element (e.g., a mirrored eighth note) in familiar elements (e.g., normally oriented eighth notes) than to find a familiar element in a background of unfamiliar elements. It was examined whether the strength of the FE for eighth notes differs between note readers and non-note readers. Furthermore, it was investigated at which component of the event-related brain potential (ERP) the FE occurs. Stimuli that consisted of either eighth notes or vertically mirrored eighth notes were presented to the participants (28 note readers, 19 non-note readers). A target element was embedded in half of the trials. Reaction times, sensitivity, and three ERP components (the N1, N2p, and P3) were recorded. For both the note readers and the non-note readers, strong FEs were found in the behavioral data. However, no differences in the strength of the FE between groups were found. Furthermore, for both groups, the FE was found for the same ERP components (target-absent trials – N1 latency; target-present trials – N2p latency, N2p amplitude, P3 amplitude). It is concluded that the early visual perception of eighth note symbols does not differ between note readers and non-note readers. However, future research is needed to verify this for more complex musical stimuli and for professional musicians.


2018 ◽  
Vol 7 ◽  
pp. 172-177
Author(s):  
Łukasz Tyburcy ◽  
Małgorzata Plechawska-Wójcik

The paper describes results of comparison of reactions times to visual and auditory stimuli using EEG evoked potentials. Two experiments were used to applied. The first one explored reaction times to visual stimulus and the second one to auditory stimulus. After conducting an analysis of data, received results enable determining that visual stimuli evoke faster reactions than auditory stimuli.


2015 ◽  
Vol 27 (4) ◽  
pp. 832-841 ◽  
Author(s):  
Amanda K. Robinson ◽  
Judith Reinhard ◽  
Jason B. Mattingley

Sensory information is initially registered within anatomically and functionally segregated brain networks but is also integrated across modalities in higher cortical areas. Although considerable research has focused on uncovering the neural correlates of multisensory integration for the modalities of vision, audition, and touch, much less attention has been devoted to understanding interactions between vision and olfaction in humans. In this study, we asked how odors affect neural activity evoked by images of familiar visual objects associated with characteristic smells. We employed scalp-recorded EEG to measure visual ERPs evoked by briefly presented pictures of familiar objects, such as an orange, mint leaves, or a rose. During presentation of each visual stimulus, participants inhaled either a matching odor, a nonmatching odor, or plain air. The N1 component of the visual ERP was significantly enhanced for matching odors in women, but not in men. This is consistent with evidence that women are superior in detecting, discriminating, and identifying odors and that they have a higher gray matter concentration in olfactory areas of the OFC. We conclude that early visual processing is influenced by olfactory cues because of associations between odors and the objects that emit them, and that these associations are stronger in women than in men.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nienke B. Debats ◽  
Herbert Heuer ◽  
Christoph Kayser

AbstractTo organize the plethora of sensory signals from our environment into a coherent percept, our brain relies on the processes of multisensory integration and sensory recalibration. We here asked how visuo-proprioceptive integration and recalibration are shaped by the presence of more than one visual stimulus, hence paving the way to study multisensory perception under more naturalistic settings with multiple signals per sensory modality. We used a cursor-control task in which proprioceptive information on the endpoint of a reaching movement was complemented by two visual stimuli providing additional information on the movement endpoint. The visual stimuli were briefly shown, one synchronously with the hand reaching the movement endpoint, the other delayed. In Experiment 1, the judgments of hand movement endpoint revealed integration and recalibration biases oriented towards the position of the synchronous stimulus and away from the delayed one. In Experiment 2 we contrasted two alternative accounts: that only the temporally more proximal visual stimulus enters integration similar to a winner-takes-all process, or that the influences of both stimuli superpose. The proprioceptive biases revealed that integration—and likely also recalibration—are shaped by the superposed contributions of multiple stimuli rather than by only the most powerful individual one.


Sign in / Sign up

Export Citation Format

Share Document