scholarly journals Activation of purinergic receptors induces proliferation and neuronal differentiation in Swiss Webster mouse olfactory epithelium

Neuroscience ◽  
2009 ◽  
Vol 163 (1) ◽  
pp. 120-128 ◽  
Author(s):  
C. Jia ◽  
J.P. Doherty ◽  
S. Crudgington ◽  
C.C. Hegg
Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 298
Author(s):  
José Antonio de Mera-Rodríguez ◽  
Guadalupe Álvarez-Hernán ◽  
Yolanda Gañán ◽  
Ana Santos-Almeida ◽  
Gervasio Martín-Partido ◽  
...  

The histochemical detection of β-galactosidase enzymatic activity at pH 6.0 (β-gal-pH6) is a widely used biomarker of cellular senescence in aging tissues. This histochemical assay also detects the presence of programmed cell senescence during specific time windows in degenerating structures of vertebrate embryos. However, it has recently been shown that this enzymatic activity is also enhanced in subpopulations of differentiating neurons in the developing central nervous system in vertebrates. The present study addressed the histochemical detection of β-gal-pH6 enzymatic activity in the developing postnatal olfactory epithelium in the mouse. This activity was detected in the intermediate layer of the olfactory epithelium. As development progressed, the band of β-gal-pH6 labeling in this layer increased in width. Immunohistochemistry and lectin histochemistry showed the β-gal-pH6 staining to be strongly correlated with the immunolabeling of the olfactory marker protein (OMP) that identifies mature olfactory sensory neurons. The cell somata of a subpopulation of differentiated olfactory neurons that were recognized with the Dolichos biflorus agglutinin (DBA) were always located inside this band of β-gal-pH6 staining. However, the β-gal-pH6 histochemical signal was always absent from the apical region where the cytokeratin-8 positive supporting cells were located. Furthermore, no β-gal-pH6 staining was found in the basal region of the olfactory epithelium where PCNA/pHisH3 immunoreactive proliferating progenitor cells, GAP43 positive immature neurons, and cytokeratin-5 positive horizontal basal cells were located. Therefore, β-gal-pH6 seems to be linked to neuronal differentiation and cannot be regarded as a biomarker of cellular senescence during olfactory epithelium development in mice.


2019 ◽  
Vol 151 (7) ◽  
pp. 954-966 ◽  
Author(s):  
Tiago Henriques ◽  
Emilio Agostinelli ◽  
Andres Hernandez-Clavijo ◽  
Devendra Kumar Maurya ◽  
Jason R. Rock ◽  
...  

Glial-like supporting (or sustentacular) cells are important constituents of the olfactory epithelium that are involved in several physiological processes such as production of endocannabinoids, insulin, and ATP and regulation of the ionic composition of the mucus layer that covers the apical surface of the olfactory epithelium. Supporting cells express metabotropic P2Y purinergic receptors that generate ATP-induced Ca2+ signaling through the activation of a PLC-mediated cascade. Recently, we reported that a subpopulation of supporting cells expresses also the Ca2+-activated Cl− channel TMEM16A. Here, we sought to extend our understanding of a possible physiological role of this channel in the olfactory system by asking whether Ca2+ can activate Cl− currents mediated by TMEM16A. We use whole-cell patch-clamp analysis in slices of the olfactory epithelium to measure dose–response relations in the presence of various intracellular Ca2+ concentrations, ion selectivity, and blockage. We find that knockout of TMEM16A abolishes Ca2+-activated Cl− currents, demonstrating that TMEM16A is essential for these currents in supporting cells. Also, by using extracellular ATP as physiological stimuli, we found that the stimulation of purinergic receptors activates a large TMEM16A-dependent Cl− current, indicating a possible role of TMEM16A in ATP-mediated signaling. Altogether, our results establish that TMEM16A-mediated currents are functional in olfactory supporting cells and provide a foundation for future work investigating the precise physiological role of TMEM16A in the olfactory system.


2008 ◽  
Vol 22 (S1) ◽  
Author(s):  
Colleen Hegg ◽  
James Doherty ◽  
Sean Crudgington ◽  
Eric Jones

Author(s):  
Bert Ph. M. Menco ◽  
Ido F. Menco ◽  
Frans L.T. Verdonk

Previously we presented an extensive study of the distributions of intramembranous particles of structures in apical surfaces of nasal olfactory and respiratory epithelia of the Sprague-Dawley rat. For the same structures these distributions were compared in samples which were i) chemically fixed and cryo-protected with glycerol before cryo-fixation, after excision, and ii)ultra-rapidly frozen by means of the slam-freezing method. Since a three-dimensional presentation markedly improves visualization of structural features micrographs were presented as stereopairs. Two exposures were made by tiling the sample stage of the electron microscope 6° in either direction with an eucentric goniometer. The negatives (Agfa Pan 25 Professional) were reversed with Kodak Technical Pan Film 2415 developed in D76 1:1. The prints were made from these reversed negatives. As an example tight-junctional features of an olfactory supporting cell in a region where this cell conjoined with two other cells are presented (Fig. 1).


2013 ◽  
Vol 225 (03) ◽  
Author(s):  
F Sherkheli ◽  
S Ackermann ◽  
F Roels ◽  
H Kocak ◽  
R Volland ◽  
...  

2015 ◽  
Vol 76 (S 01) ◽  
Author(s):  
Chester Griffiths ◽  
Garni Barkhoudarian ◽  
Aaron Cutler ◽  
Huy Duong ◽  
Bjorn Lobo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document