Anodal transcranial direct current stimulation enhances time to task failure of a submaximal contraction of elbow flexors without changing corticospinal excitability

Neuroscience ◽  
2016 ◽  
Vol 322 ◽  
pp. 94-103 ◽  
Author(s):  
A. Abdelmoula ◽  
S. Baudry ◽  
J. Duchateau
2021 ◽  
Author(s):  
Simranjit K Sidhu

Transcranial direct current stimulation (tDCS), a non-invasive neuromodulatory technique has been shown to increase the excitability of targeted brain area and influence endurance exercise performance. However, tDCS-mediated interaction between corticospinal excitability, GABAA mediated intracortical inhibition and endurance exercise performance remains understudied. In two separate sessions, twelve subjects performed fatigue cycling exercise (80% peak power output) sustained to task failure in a double-blinded design, following either ten minutes of anodal tDCS (atDCS) or sham. Corticospinal excitability and short interval intracortical inhibition (SICI) were measured at baseline, post neuromodulation and post-exercise using paired-pulse transcranial magnetic stimulation (TMS) in a resting hand muscle. There was a greater a decrease in SICI (P < 0.05) post fatigue cycling with atDCS priming compared to sham. Time to task failure (TTF) was significantly increased following atDCS compared to sham (P < 0.05). These findings suggest that atDCS applied over the motor cortex can augment cycling exercise performance; and this outcome may be mediated via a decrease in the excitability of GABAA inhibitory interneurons.


2009 ◽  
Vol 102 (4) ◽  
pp. 2303-2311 ◽  
Author(s):  
Til Ole Bergmann ◽  
Sergiu Groppa ◽  
Markus Seeger ◽  
Matthias Mölle ◽  
Lisa Marshall ◽  
...  

Transcranial oscillatory current stimulation has recently emerged as a noninvasive technique that can interact with ongoing endogenous rhythms of the human brain. Yet, there is still little knowledge on how time-varied exogenous currents acutely modulate cortical excitability. In ten healthy individuals we used on-line single-pulse transcranial magnetic stimulation (TMS) to search for systematic shifts in corticospinal excitability during anodal sleeplike 0.8-Hz slow oscillatory transcranial direct current stimulation (so-tDCS). In separate sessions, we repeatedly applied 30-s trials (two blocks at 20 min) of either anodal so-tDCS or constant tDCS (c-tDCS) to the primary motor hand area during quiet wakefulness. Simultaneously and time-locked to different phase angles of the slow oscillation, motor-evoked potentials (MEPs) as an index of corticospinal excitability were obtained in the contralateral hand muscles 10, 20, and 30 s after the onset of tDCS. MEPs were also measured off-line before, between, and after both stimulation blocks to detect any lasting excitability shifts. Both tDCS modes increased MEP amplitudes during stimulation with an attenuation of the facilitatory effect toward the end of a 30-s tDCS trial. No phase-locking of corticospinal excitability to the exogenous oscillation was observed during so-tDCS. Off-line TMS revealed that both c-tDCS and so-tDCS resulted in a lasting excitability increase. The individual magnitude of MEP facilitation during the first tDCS trials predicted the lasting MEP facilitation found after tDCS. We conclude that sleep slow oscillation-like excitability changes cannot be actively imposed on the awake cortex with so-tDCS, but phase-independent on-line as well as off-line facilitation can reliably be induced.


Sign in / Sign up

Export Citation Format

Share Document