scholarly journals Preliminary Evidence That Anodal Transcranial Direct Current Stimulation Enhances Time to Task Failure of a Sustained Submaximal Contraction

PLoS ONE ◽  
2013 ◽  
Vol 8 (12) ◽  
pp. e81418 ◽  
Author(s):  
Petra S. Williams ◽  
Richard L. Hoffman ◽  
Brian C. Clark
2020 ◽  
Vol 10 (2) ◽  
pp. 96 ◽  
Author(s):  
Craig D. Workman ◽  
Alexandra C. Fietsam ◽  
Ergun Y. Uc ◽  
Thorsten Rudroff

People with Parkinson’s disease (PwPD) often experience gait and balance problems that substantially impact their quality of life. Pharmacological, surgical, and rehabilitative treatments have limited effectiveness and many PwPD continue to experience gait and balance impairment. Transcranial direct current stimulation (tDCS) may represent a viable therapeutic adjunct. The effects of lower intensity tDCS (2 mA) over frontal brain areas, in unilateral and bilateral montages, has previously been explored; however, the effects of lower and higher intensity cerebellar tDCS (2 mA and 4 mA, respectively) on gait and balance has not been investigated. Seven PwPD underwent five cerebellar tDCS conditions (sham, unilateral 2 mA, bilateral 2 mA, unilateral 4 mA, and bilateral 4 mA) for 20 min. After a 10 min rest, gait and balance were tested. The results indicated that the bilateral 4 mA cerebellar tDCS condition had a significantly higher Berg Balance Scale score compared to sham. This study provides preliminary evidence that a single session of tDCS over the cerebellum, using a bilateral configuration at a higher intensity (4 mA), significantly improved balance performance. This intensity and cerebellar configuration warrants future investigation in larger samples and over repeated sessions.


2020 ◽  
Vol 29 (3) ◽  
pp. 1376-1388
Author(s):  
Lynsey M. Keator ◽  
Alexandra Basilakos ◽  
Christopher Rorden ◽  
Jordan Elm ◽  
Leonardo Bonilha ◽  
...  

Purpose The objectives of this study are to (a) identify speech-language pathologists' (SLPs') familiarity with transcranial direct current stimulation (tDCS), (b) quantify what SLPs consider necessary tDCS-related improvement in aphasia severity (i.e., tDCS enhancement; desired improvement above and beyond traditional behavioral therapy) to implement this adjuvant therapy for the clinical management of aphasia, and (c) identify concerns that could potentially hinder the clinical adoption of tDCS. Method A brief (14-question) survey was disseminated via e-mail and social media outlets targeting SLPs working with individuals with aphasia. Results Two hundred twenty-one individuals responded, and 155 valid surveys were analyzed. Seventy-one percent of participants reported familiarity with tDCS prior to taking the survey. Clinicians reported a desired mean enhancement of 22.9% additional points on the Western Aphasia Battery–Revised Aphasia Quotient. Importantly, 94.2% of SLPs reported concerns regarding the implementation of tDCS in clinical settings (i.e., safety, cost, administrative approval, reimbursement and training). Conclusions This is the first study to identify SLPs' perspectives regarding the clinical adoption of tDCS. Results suggest the majority of queried SLPs were familiar with tDCS prior to taking the survey. Although SLPs report a desired improvement of approximately 23% additional points on the Western Aphasia Battery–Revised Aphasia Quotient to consider adopting tDCS into practice, many SLPs reported concerns regarding clinical adoption. Responses from the current survey offer important preliminary evidence to begin bridging the research-to-practice gap as it relates to the clinical implementation of tDCS. Relatedly, these results will inform future clinical trials.


Pain Medicine ◽  
2019 ◽  
Vol 21 (12) ◽  
pp. 3615-3623 ◽  
Author(s):  
Rodrigo Pegado ◽  
Luana Karyne Silva ◽  
Hégila da Silva Dantas ◽  
Hialison Andrade Câmara ◽  
Karime Andrade Mescouto ◽  
...  

Abstract Objective The aim of this trial was to investigate the effects of five consecutive sessions of anodal transcranial direct current stimulation (tDCS) over the motor cortex (M1) on pain, mood, and physical performance in patients with primary dysmenorrhea (PDM). Design This is a double-blind randomized controlled trial. Subjects Twenty-two participants with PDM according to the No. 345-PDM Consensus Guideline were included. Methods Eleven active treatment and 11 sham stimulation patients received five applications over a one-week period. The primary outcome measures were pain evaluated by numeric rating scale (NRS) and McGill Questionnaire score. Secondary outcomes measures were responses to the Positive and Negative Affect Schedule (PANAS), Hamilton Anxiety Scale (HAM-A), grip strength, and six-minute walk test (6MWT). Baseline data were performed during the first menstrual cycle, and during the second menstrual cycle, participants were conducted to tDCS treatment, and postintervention data were collected. Results The intervention provided significant improvements on NRS in active tDCS, shown as an interaction between group intervention vs pre/postintervention vs days of menstrual cycle (Wald x2 = 10.54, P = 0.005), main effect of days of menstrual cycle (Wald x2 = 25.42, P < 0.001), and pre/postintervention (Wald x2 = 6.97, P = 0.008). McGill showed an interaction effect between pre/postintervention and group of stimulation (Wald x2 = 18.45, P = 0.001), with a large reduction in active tDCS (P < 0.001, d = 0.75). Psychological and functional outcomes did not differ between groups or pre/postintervention. Conclusions tDCS could provide pain relief in subjects with PDM. These results provide some preliminary evidence for the potential role of tDCS as a contributor to the management of symptoms of PDM.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Joyce L Chen ◽  
Gottfried Schlaug

Abstract Non-invasive stimulation of the brain using transcranial direct current stimulation (tDCS) during motor rehabilitation can improve the recovery of movements in individuals with stroke. However, the neural substrates that underlie the clinical improvements are not well understood. In this proof-of-principle open-label pilot study, five individuals with stroke received 10 sessions of tDCS while undergoing usual care physical/occupational therapy for the arm and hand. Motor impairment as indexed by the Upper Extremity Fugl Meyer assessment was significantly reduced after the intervention. Resting state fMRI connectivity increased between ipsilesional motor cortex and contralesional premotor cortex after the intervention. These findings provide preliminary evidence that the neural underpinnings of tDCS coupled with rehabilitation exercises, may be mediated by interactions between motor and premotor cortex. The latter, of which has been shown to play an important role in the recovery of movements post-stroke. Our data suggest premotor cortex could be tested as a target region for non-invasive brain-stimulation to enhance connectivity between regions that might be beneficial for stroke motor recovery.


2019 ◽  
Vol 22 (1) ◽  
pp. 57-63 ◽  
Author(s):  
Robert Suchting ◽  
Gabriela D. Colpo ◽  
Natalia P. Rocha ◽  
Hyochol Ahn

Transcranial direct current stimulation (tDCS) has demonstrated effectiveness in reducing clinical and experimental measures of pain in patients with chronic pain; however, research examining the mechanisms of action for the effects of tDCS has been lacking. The present study investigated the effect of active tDCS on measures of inflammation and stress. Older adults (aged 50–70 years) with knee osteoarthritis (OA) were randomly assigned to receive daily 20-min sessions of either tDCS ( n = 20) or sham tDCS ( n = 20) for 5 consecutive days. Participants provided blood samples at baseline and the end of treatment. The following measures of immune function and stress were collected: interleukin (IL)-6 and 10, tumor necrosis factor-α (TNF-α), C-reactive protein, cortisol, and β-endorphin. Generalized linear modeling evaluated each posttreatment measure as a function of tDCS group, controlling for baseline (measuring residual change, analogous to analysis of covariance). Bayesian statistical inference was used to directly quantify the probability of the effect of active tDCS. IL-6, IL-10, TNF-α, and β-endorphin demonstrated lower levels of stress and inflammation in the active tDCS group. These findings provide preliminary evidence that active (relative to sham) tDCS is associated with reduced levels of inflammation.


Sign in / Sign up

Export Citation Format

Share Document