Cannabinoid Receptor Type 1 in the Brain Regulates the Affective Component of Visceral Pain in Mice

Neuroscience ◽  
2018 ◽  
Vol 384 ◽  
pp. 397-405 ◽  
Author(s):  
Danica Bajic ◽  
Krisztina Monory ◽  
Andrea Conrad ◽  
Christina Maul ◽  
Roland M. Schmid ◽  
...  
Author(s):  
Andrea Mastinu ◽  
Marika Premoli ◽  
Giulia Ferrari-Toninelli ◽  
Simone Tambaro ◽  
Giuseppina Maccarinelli ◽  
...  

Abstract The use of different natural and/or synthetic preparations of Cannabis sativa is associated with therapeutic strategies for many diseases. Indeed, thanks to the widespread diffusion of the cannabinoidergic system in the brain and in the peripheral districts, its stimulation, or inhibition, regulates many pathophysiological phenomena. In particular, central activation of the cannabinoidergic system modulates the limbic and mesolimbic response which leads to food craving. Moreover, cannabinoid agonists are able to reduce inflammatory response. In this review a brief history of cannabinoids and the protagonists of the endocannabinoidergic system, i.e. synthesis and degradation enzymes and main receptors, will be described. Furthermore, the pharmacological effects of cannabinoids will be outlined. An overview of the involvement of the endocannabinoidergic system in neuroinflammatory and metabolic pathologies will be made. Finally, particular attention will also be given to the new pharmacological entities acting on the two main receptors, cannabinoid receptor type 1 (CB1) and cannabinoid receptor type 2 (CB2), with particular focus on the neuroinflammatory and metabolic mechanisms involved.


2017 ◽  
Vol 112 (6) ◽  
pp. 933-939 ◽  
Author(s):  
Andrzej Wasilewski ◽  
Urszula Lewandowska ◽  
Paula Mosinska ◽  
Cezary Watala ◽  
Martin Storr ◽  
...  

2020 ◽  
Vol 34 (4) ◽  
pp. 429-440
Author(s):  
Lucas Gomes-de-Souza ◽  
Willian Costa-Ferreira ◽  
Leandro A Oliveira ◽  
Ricardo Benini ◽  
Carlos C Crestani

Background: Endocannabinoid neurotransmission in the bed nucleus of the stria terminalis is involved in the control of cardiovascular responses to stress. However, the local mechanisms involved is this regulation are not known. Aims: The purpose of this study was to assess an interaction of bed nucleus of the stria terminalis endocannabinoid neurotransmission with local nitrergic signaling, as well as to investigate the involvement of local N-methyl-D-aspartate glutamate receptor and nitric oxide signaling in the control of cardiovascular responses to acute restraint stress by bed nucleus of the stria terminalis endocannabinoid neurotransmission in rats. Methods: The first protocol evaluated the effect of intra-bed nucleus of the stria terminalis microinjection of the selective cannabinoid receptor type 1 receptor antagonist AM251 in nitrite/nitrate content in the bed nucleus of the stria terminalis following restraint stress. The other protocols evaluated the impact of local pretreatment with the selective N-methyl-D-aspartate glutamate receptor antagonist LY235959, the selective neuronal nitric oxide synthase inhibitor Nω-propyl-L-arginine, the soluble guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, or the protein kinase G inhibitor KT5823 in restraint-evoked cardiovascular changes following bed nucleus of the stria terminalis treatment with AM251. Results: Bilateral microinjection of AM251 into the bed nucleus of the stria terminalis increased local nitric oxide release during restraint stress. Bed nucleus of the stria terminalis treatment with the cannabinoid receptor type 1 receptor antagonist also enhanced the tachycardia caused by restraint stress, but without affecting arterial pressure increase and sympathetic-mediated cutaneous vasoconstriction. The facilitation of restraint-evoked tachycardia following bed nucleus of the stria terminalis treatment with the cannabinoid receptor type 1 receptor antagonist was completely inhibited by local pretreatment with LY235959, Nω-propyl-L-arginine, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, or KT5823. Conclusions: Our results provide evidence that bed nucleus of the stria terminalis endocannabinoid neurotransmission inhibits local N-methyl-D-aspartate/neuronal nitric oxide synthase/soluble guanylate cyclase/protein kinase G signaling, and this mechanism is involved in the control of the cardiovascular responses to stress.


Author(s):  
Trenton C. Simmons ◽  
Sara M. Freeman ◽  
Nicholas S. Lackey ◽  
Brooke K. Dreyer ◽  
Devanand S. Manoli ◽  
...  

2018 ◽  
Vol 92 (9) ◽  
pp. 2885-2896 ◽  
Author(s):  
Yaochen Zhang ◽  
Don-Kyu Kim ◽  
Yoon Seok Jung ◽  
Yong-Hoon Kim ◽  
Yong Soo Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document