scholarly journals DTS based hydraulic fracture identification and production profile interpretation method for horizontal shale gas wells

Author(s):  
Haitao Li ◽  
Hongwen Luo ◽  
Yuxing Xiang ◽  
Ying Li ◽  
Beibei Jiang ◽  
...  
2018 ◽  
Vol 37 (8) ◽  
pp. 2098-2111 ◽  
Author(s):  
L.M. Crosby ◽  
Calin A. Tatu ◽  
Matthew Varonka ◽  
Kaylene M. Charles ◽  
William H. Orem

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jianfeng Xiao ◽  
Xianzhe Ke ◽  
Hongxuan Wu

After multistage hydraulic fracturing of shale gas reservoir, a complex fracture network is formed near the horizontal wellbore. In postfracturing flowback and early-time production period, gas and water two-phase flow usually occurs in the hydraulic fracture due to the retention of a large amount of fracturing fluid in the fracture. In order to accurately interpret the key parameters of hydraulic fracture network, it is necessary to establish a production decline analysis method considering fracturing fluid flowback in shale gas reservoirs. On this basis, an uncertain fracture network model was established by integrating geological, fracturing treatment, flowback, and early-time production data. By identifying typical flow-regimes and correcting the fracture network model with history matching, a set of production decline analysis and fracture network interpretation method with consideration of fracturing fluid flowback in shale gas reservoir was formed. Derived from the case analysis of a typical fractured horizontal well in shale gas reservoirs, the interpretation results show that the total length of hydraulic fractures is 4887.6 m, the average half-length of hydraulic fracture in each stage is 93.4 m, the average fracture conductivity is 69.7 mD·m, the stimulated reservoir volume (SRV) is 418 × 10 4   m 3 , and the permeability of SRV is 5.2 × 10 − 4   mD . Compared with the interpretation results from microseismic monitoring data, the effective hydraulic fracture length obtained by integrated fracture network interpretation method proposed in this paper is 59% of that obtained from the microseismic monitoring data, and the effective SRV is 83% of that from the microseismic monitoring data. The results show that the fracture length is smaller and the fracture conductivity is larger without considering the influence of fracturing fluid.


SPE Journal ◽  
2019 ◽  
Vol 25 (03) ◽  
pp. 1489-1502 ◽  
Author(s):  
Kui Liu ◽  
Arash Dahi Taleghani ◽  
Deli Gao

Summary Casing failure in shale gas wells has seriously impacted production from Weiyuan and Changning fields in Sichuan Province, China. Linearly distributed microseismic data and the corresponding casing shear deformation close to these microseismic signals indicate fault reactivation in these areas during hydraulic-fracturing treatments. Apparently, interaction of hydraulic fractures with nearby faults causes fault slippage, which in some situations has led to well shearing. Hence, we propose a semianalytical model in this paper to estimate the length of slippage along the fault that is caused by pressurization of a fault intercepted by the hydraulic fracture. These calculations have been performed for different configurations of the fault with respect to the hydraulic fracture and principal stresses. Using the semianalytical model provided in this paper, two fault slippage cases are calculated to assess the casing failure in nearby wells. In one case study, the calculated results of the fault slippage are consistent with the scale of casing deformation in that well and a microseismic magnitude caused by fault slippage is calculated that is larger than the detected events. The presented model will provide a tool for a quick estimation of the magnitude of fault slippage upon intersection with a hydraulic fracture, to avoid potential casing failures and obtain a more reliable spacing selection in the wells intersecting faults.


Author(s):  
Zhiming Chen ◽  
Hongyang Chu ◽  
Xuefeng Tang ◽  
Lingyu Mu ◽  
Peng Dong ◽  
...  
Keyword(s):  

2020 ◽  
Vol 7 (6) ◽  
pp. 671-679
Author(s):  
Yuanhua Lin ◽  
Kuanhai Deng ◽  
Hao Yi ◽  
Dezhi Zeng ◽  
Liang Tang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document