scholarly journals Performances of diffusion kurtosis imaging and diffusion tensor imaging in detecting white matter abnormality in schizophrenia

2015 ◽  
Vol 7 ◽  
pp. 170-176 ◽  
Author(s):  
Jiajia Zhu ◽  
Chuanjun Zhuo ◽  
Wen Qin ◽  
Di Wang ◽  
Xiaomei Ma ◽  
...  
2021 ◽  
Vol 13 ◽  
Author(s):  
Ying Wei ◽  
Caihong Wang ◽  
Jingchun Liu ◽  
Peifang Miao ◽  
Sen Wei ◽  
...  

Neurological deficits after stroke are closely related to white matter microstructure damage. However, secondary changes in white matter microstructure after pontine infarction (PI) in the whole brain remain unclear. This study aimed to investigate the correlation of diffusion kurtosis imaging (DKI)-derived diffusion and kurtosis parameters of abnormal white matter tracts with behavioral function in patients with chronic PI. Overall, 60 patients with unilateral chronic PI (33 patients with left PI and 27 patients with right PI) and 30 normal subjects were recruited and underwent DKI scans. Diffusion parameters derived from diffusion tensor imaging (DTI) and DKI and kurtosis parameters derived from DKI were obtained. Between-group differences in multiple parameters were analyzed to assess the changes in abnormal white matter microstructure. Moreover, we also calculated the sensitivities of different diffusion and kurtosis parameters of DTI and DKI for identifying abnormal white matter tracts. Correlations between the DKI-derived parameters in secondary microstructure changes and behavioral scores in the PI were analyzed. Compared with the NC group, both left PI and right PI groups showed more extensive perilesional and remote white matter microstructure changes. The DKI-derived diffusion parameters showed higher sensitivities than did the DTI-derived parameters. Further, DKI-derived diffusion and kurtosis parameters in abnormal white matter regions were correlated with impaired motor and cognitive function in patients with PI. In conclusion, PI could lead to extensive white matter tracts impairment in perilesional and remote regions. Further, the diffusion and kurtosis parameters could be complementary for identifying comprehensive tissue microstructural damage after PI.


2021 ◽  
pp. 028418512199900
Author(s):  
Jun Ran ◽  
Bin Dai ◽  
Chanyuan Liu ◽  
Huayue Zhang ◽  
Yitong Li ◽  
...  

Background Dermatomyositis (DM) and muscular dystrophy are clinically difficult to differentiate. Purpose To confirm the feasibility and assess the accuracy of conventional magnetic resonance imaging (MRI), T2 map, diffusion tensor imaging (DTI), and diffusion kurtosis imaging (DKI) in the differentiation of DM from muscular dystrophy. Material and Methods Forty-two patients with DM proven by diagnostic criteria were enrolled in the study along with 23 patients with muscular dystrophy. Conventional MR, T2 map, DTI, and DKI images were obtained in the thigh musculature for all patients. Intramuscular T2 value, apparent diffusion coefficient (ADC), fractional anisotropy (FA), mean diffusivity (MD), and mean kurtosis (MK) values were compared between the patients with DM and muscular dystrophy. Student’s t-tests and receiver operating characteristic (ROC) curve analyses were performed for all parameters. P values < 0.05 were considered statistically significant. Results The intramuscular T2, ADC, FA, MD, and MK values within muscles were statistically significantly different between the DM and muscular dystrophy groups ( P<0.01). The MK value was statistically significantly different between the groups in comparison with T2 and FA value. As a supplement to conventional MRI, the parameters of MD and MK differentiated DM and muscular dystrophy may be valuable. The optimal cut-off value of ADC and MD values (with respective AUC, sensitivity, and specificity) between DM and muscular dystrophy were 1.698 ×10−3mm2/s (0.723, 54.1%, and 78.1%) and 1.80 ×10−3mm2/s (61.9% and 70.2%), respectively. Conclusion Thigh muscle ADC and MD parameters may be useful in differentiating patients with DM from those with muscular dystrophy.


Sign in / Sign up

Export Citation Format

Share Document