Developing a CCD camera with high spatial resolution for RIXS in the soft X-ray range

Author(s):  
M.R. Soman ◽  
D.J. Hall ◽  
J.H. Tutt ◽  
N.J. Murray ◽  
A.D. Holland ◽  
...  
1998 ◽  
Vol 4 (S2) ◽  
pp. 352-353
Author(s):  
W. Meyer-Ilse ◽  
J. T. Brown ◽  
C. Magowan ◽  
J. Yeung ◽  
K. E. Kurtis ◽  
...  

The Center for X-ray Optics (CXRO) built and operates a high-resolution soft x-ray microscope (XM-1) at the Advanced Light Source in Berkeley. We report on the use of this instrument in a variety of scientific fields, including biology, civil engineering and environmental sciences.The microscope is a conventional (full field) x-ray microscope, which uses zone plate lenses to provide high resolution transmission images. The optical setup is similar to the Göttingen x-ray microscope, operated at the BESSY synchrotron radiation facility in Berlin, Germany. A condenser zone plate, fabricated by the Göttingen group, is illuminating the sample and an objective zone plate, fabricated by Erik Anderson (CXRO), is forming an enlarged image on an x-ray CCD camera. While the optical path of the microscope is in vacuum, the sample is at atmospheric pressure, flushed by helium. The spatial resolution of our microscope is 43 nm, measured as the distance from 10%-90% intensity in the image of a knife-edge.


Radiology ◽  
2015 ◽  
Vol 275 (1) ◽  
pp. 310-310 ◽  
Author(s):  
Richard M. Morris ◽  
Lang Yang ◽  
Miguel A. Martín-Fernández ◽  
Jose M. Pozo ◽  
Alejandro F. Frangi ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1721
Author(s):  
Heon Yong Jeong ◽  
Hyung San Lim ◽  
Ju Hyuk Lee ◽  
Jun Heo ◽  
Hyun Nam Kim ◽  
...  

The effect of scintillator particle size on high-resolution X-ray imaging was studied using zinc tungstate (ZnWO4) particles. The ZnWO4 particles were fabricated through a solid-state reaction between zinc oxide and tungsten oxide at various temperatures, producing particles with average sizes of 176.4 nm, 626.7 nm, and 2.127 μm; the zinc oxide and tungsten oxide were created using anodization. The spatial resolutions of high-resolution X-ray images, obtained from utilizing the fabricated particles, were determined: particles with the average size of 176.4 nm produced the highest spatial resolution. The results demonstrate that high spatial resolution can be obtained from ZnWO4 nanoparticle scintillators that minimize optical diffusion by having a particle size that is smaller than the emission wavelength.


2005 ◽  
Author(s):  
Michael R. Squillante ◽  
Richard A. Myers ◽  
Mitchell Woodring ◽  
James F. Christian ◽  
Frank Robertson ◽  
...  

Author(s):  
Toru Aoki ◽  
Kento Tabata ◽  
Ryota Okate ◽  
Shailendra Singh ◽  
Hiroki Kase ◽  
...  

Author(s):  
Sho Miyao ◽  
Takahiro Tanino ◽  
Nobuyasu Fujioka ◽  
Izumi Hikita ◽  
Tomohiro Morinaga ◽  
...  

2007 ◽  
Author(s):  
Courtney A. Brewer ◽  
Fernando Brizuela ◽  
Dale Martz ◽  
Georgiy Vaschenko ◽  
Mario C. Marconi ◽  
...  

2011 ◽  
Vol 50 ◽  
pp. 122202 ◽  
Author(s):  
Tomoharu Nakazato ◽  
Toshihiko Shimizu ◽  
Kohei Yamanoi ◽  
Kohei Sakai ◽  
Kohei Takeda ◽  
...  

2017 ◽  
Vol 6 (1) ◽  
pp. 93-101 ◽  
Author(s):  
Philipp Hoelzmann ◽  
Torsten Klein ◽  
Frank Kutz ◽  
Brigitta Schütt

Abstract. Portable energy-dispersive X-ray fluorescence spectrometers (p-ED-XRF) have become increasingly popular in sedimentary laboratories to quantify the chemical composition of a range of materials such as sediments, soils, solid samples, and artefacts. Here, we introduce a low-cost, clearly arranged unit that functions as a sample chamber (German industrial property rights no. 20 2014 106 048.0) for p-ED-XRF devices to facilitate economic, non-destructive, fast, and semi-continuous analysis of (sediment) cores or other solid samples. The spatial resolution of the measurements is limited to the specifications of the applied p-ED-XRF device – in our case a Thermo Scientific Niton XL3t p-ED-XRF spectrometer with a maximum spatial resolution of 0.3 cm and equipped with a charge-coupled device (CCD) camera to document the measurement spot. We demonstrate the strength of combining p-ED-XRF analyses with this new sample chamber to identify Holocene facies changes (e.g. marine vs. terrestrial sedimentary facies) using a sediment core from an estuarine environment in the context of a geoarchaeological investigation at the Atlantic coast of southern Spain.


Sign in / Sign up

Export Citation Format

Share Document