Design of a spreader bar crane-mounted gamma-ray radiation detection system

Author(s):  
Matthew D. Grypp ◽  
Craig M. Marianno ◽  
John W. Poston ◽  
Gentry C. Hearn
2021 ◽  
Vol 136 (3) ◽  
Author(s):  
Andrea Chierici ◽  
Andrea Malizia ◽  
Daniele di Giovanni ◽  
Francesca Fumian ◽  
Luca Martellucci ◽  
...  

AbstractUnconventional scenarios with hazardous radioactive levels are expected as consequences of accidents in the industrial sector of the nuclear energy production or following intentional releases of radioactive materials for terrorist purposes (dirty bombs, indoor contaminations, etc.). Nowadays, the need to balance the high standards of safety and security through an effective detection network is a matter of paramount importance. In this work, the authors’ challenge has been to design, realize and test a low-cost gamma detection and spectroscopy system which may be used in unmanned vehicles in general and/or drones with low payload capabilities. The designed platform may be used to carry out mapping or localization operations in order to reduce the risk factor for first responders or for the population affected by radiological and nuclear events. In this paper, the design process of a gamma ray detection and spectroscopy system based on affordable and commercially available technologies is presented along with the results of our ongoing characterization of the prototype.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1051
Author(s):  
Luís Marques ◽  
Alberto Vale ◽  
Pedro Vaz

In the last decade, the development of more compact and lightweight radiation detection systems led to their application in handheld and small unmanned systems, particularly air-based platforms. Examples of improvements are: the use of silicon photomultiplier-based scintillators, new scintillating crystals, compact dual-mode detectors (gamma/neutron), data fusion, mobile sensor networks, cooperative detection and search. Gamma cameras and dual-particle cameras are increasingly being used for source location. This study reviews and discusses the research advancements in the field of gamma-ray and neutron measurements using mobile radiation detection systems since the Fukushima nuclear accident. Four scenarios are considered: radiological and nuclear accidents and emergencies; illicit traffic of special nuclear materials and radioactive materials; nuclear, accelerator, targets, and irradiation facilities; and naturally occurring radioactive materials monitoring-related activities. The work presented in this paper aims to: compile and review information on the radiation detection systems, contextual sensors and platforms used for each scenario; assess their advantages and limitations, looking prospectively to new research and challenges in the field; and support the decision making of national radioprotection agencies and response teams in respect to adequate detection system for each scenario. For that, an extensive literature review was conducted.


2020 ◽  
Vol 152 ◽  
pp. S957-S958
Author(s):  
P. Costanza ◽  
R.I. Mackay ◽  
K.J. Kirkby ◽  
M.J. Taylor

2019 ◽  
Vol 21 ◽  
pp. 29
Author(s):  
E. G. Androulakaki ◽  
C. Tsabaris ◽  
M. Kokkoris ◽  
G. Eleftheriou ◽  
D. L. Patiris ◽  
...  

The in-situ gamma-ray spectrometry is a well suited method for seabed mapping applications, since it provides rapid results in a cost effective manner. Moreover, the in-situ method is preferable to the commonly applied laboratory measurements, due to its beneficial characteristics. Therefore, the development of in-situ systems for seabed measurements continuously grows. However, an efficiency calibration of the detection system is necessary for obtaining quantitative results in the full spectral range. In the present work, an approach for calculating the full-energy peak efficiency of an underwater insitu spectrometer for measure- ments on the seabed is presented. The experimental work was performed at the coastal site of Vasilikos (Cyprus). The experimental full-energy peak efficiency of the in-situ was determined in the energy range 1400–2600 keV, by combining the in-situ and laboratory reference measurements. The experimental effi- ciency results were theoretically reproduced by means of Monte Carlo (MC) simulations, using the MCNP5 code.


2020 ◽  
Vol 225 ◽  
pp. 07002
Author(s):  
H. Al Hamrashdi ◽  
S. D. Monk ◽  
D. Cheneler

The design and configuration of a multi-layered imaging system with the ability to detect thermal neutrons, fast neutrons and gamma rays has been developed and its efficacy demonstrated. The work presented here numerically determines the systems efficiency and spatial resolution, using 252Cf and 137Cs as a case study. The novelty of this detection system lies in the use of small form factor detectors in a three-layer design, which utilises neutron elastic scattering and Compton scattering simultaneously. The current configuration consists of 10 mm thick natural lithium glass (GS10) scintillator integrated with a 20 mm thick plastic scintillator (EJ-204) in the first layer, a 15 mm thick lithium glass (GS10) scintillator in the second and a 30 mm thick CsI(Tl) scintillator forming the final layer. Each of these layers is backed with an 8 x 8 silicon photomultiplier diode (SiPM) array. The overall size of the imaging system is 27 mm x 27 mm x 135 mm. MCNPv6.1 and Geant4-10.04 were alternatively used to optimise the overall configuration and to investigate detection modalities. Results show promising performance with high precision source localisation and characterization abilities. Measurements were virtually obtained of two gamma-ray sources within steel enclosures at angles of 15°, 30° and 50° separation in order to test spatial resolution ability of the system. With the current active size of the system and the 8x8 SiPM configuration, the results estimate the spatial resolution to be close to 30°. The ability of the system to characterise and identify sources based on the type and energy of the radiation emitted, has been investigated and results show that for all radiation types the system can identify the source energy within the energy range of typical reported sources in literature.


1965 ◽  
Vol 48 (1) ◽  
pp. 1-5
Author(s):  
Harry M Yakabe ◽  
Hiram Neilson

Abstract In the surveillance of bulk food produce by gamma ray spectroscopy for fission products, the activities of the commonly observed radionuclides are frequently in the magnitude of background inherent to the detection system. The problems of determining whether the sample is in fact contaminated, the lower limits of detecting the radionuclides, and the effect of compton smear on the lower limits are discussed. The discussions are based on the modified spectrum stripping method for quantitative analysis of gamma ray spectrum for the following radioisotopes: Cs-137, Zr-95/Nb-95, and K-40. A family of curves are shown for rapid determination of the minimum detectable true activity (AII) of Cs-137.


Optik ◽  
2018 ◽  
Vol 158 ◽  
pp. 1220-1226 ◽  
Author(s):  
Min Shen ◽  
Sha li Xiao ◽  
Miao Li

Sign in / Sign up

Export Citation Format

Share Document