Effects of electron beam irradiation on the structural properties of polylactic acid/polyethylene blends

Author(s):  
Soo-Tueen Bee ◽  
C.T. Ratnam ◽  
Lee Tin Sin ◽  
Tiam-Ting Tee ◽  
Wai-Kien Wong ◽  
...  
2015 ◽  
Vol 79 ◽  
pp. 35-46 ◽  
Author(s):  
Soo-Tueen Bee ◽  
Lee Tin Sin ◽  
C.T. Ratnam ◽  
R.R.D. Kavee-Raaz ◽  
Tiam-Ting Tee ◽  
...  

2020 ◽  
Vol 1002 ◽  
pp. 57-65
Author(s):  
Abdulkader M. Alakrach ◽  
Nik Noriman Zulkepli ◽  
Awad A. Al-Rashdi ◽  
Sam Sung Ting ◽  
Rosniza Hamzah ◽  
...  

This study aimed to develop novel Polylactic acid/ Halloysite (PLA/ HNTs) films which showed better properties when they were used for food packaging. They also displayed better mechanical, barrier, morphological and structural properties when the researchers analysed the impact of the electron beam irradiation on the nanomaterials. They prepared PLA-based nanocomposites containing 5 % w/w of HNTs using the solution casting process. These nanocomposites were further exposed to different ebeam doses (i.e., 0, 20, 40 and 60 kGy). The researchers assessed the effect of the electron beam irradiation on the various properties of the PLA. All the composites showed a homogenous dispersion and distribution of the HNTs in this PLA matrix. Results indicated that the nanocomposites showed better barrier properties in comparison to the neat PLA. Furthermore, the ebeam irradiation could increase the glass-transition temperature and lead to the development of more crosslinks, which increased the degradation temperature and hydrophilicity of the nanocomposites. In this study, the researchers showed that the PLA/HNTs films were effective materials that could be used for the electron beam processing of the pre-packed foods. The best effect was noted for the 20 kGy dosage which was used in the study.


Polymers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 898 ◽  
Author(s):  
Katsuyoshi Shinyama

Polylactic acid (PLA), a bioplastic, is a hard resin, and requires softening in order to be used in electric wire sheaths. A soft resin was added to PLA in order to soften it, but this caused the electric breakdown strength (EB) to decrease. In this study, PLA with soft resin added was irradiated with an electron beam and the influence of the electron beam irradiation on EB was examined. The irradiation dose was set at 100 kGy. At 25 °C, the EB of PLA with no soft resin added decreased due to the irradiation. On the other hand, the EB of PLA with soft resin added showed almost no change due to the irradiation. At 80 °C, the EB of PLA with no soft resin added decreased due to the irradiation, as was the case at 25 °C. On the other hand, the EB of PLA with soft resin added increased due to the irradiation.


Sign in / Sign up

Export Citation Format

Share Document