scholarly journals Influence of Electron Beam Irradiation on Electrical Insulating Properties of PLA with Soft Resin Added †

Polymers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 898 ◽  
Author(s):  
Katsuyoshi Shinyama

Polylactic acid (PLA), a bioplastic, is a hard resin, and requires softening in order to be used in electric wire sheaths. A soft resin was added to PLA in order to soften it, but this caused the electric breakdown strength (EB) to decrease. In this study, PLA with soft resin added was irradiated with an electron beam and the influence of the electron beam irradiation on EB was examined. The irradiation dose was set at 100 kGy. At 25 °C, the EB of PLA with no soft resin added decreased due to the irradiation. On the other hand, the EB of PLA with soft resin added showed almost no change due to the irradiation. At 80 °C, the EB of PLA with no soft resin added decreased due to the irradiation, as was the case at 25 °C. On the other hand, the EB of PLA with soft resin added increased due to the irradiation.

2015 ◽  
Vol 79 ◽  
pp. 35-46 ◽  
Author(s):  
Soo-Tueen Bee ◽  
Lee Tin Sin ◽  
C.T. Ratnam ◽  
R.R.D. Kavee-Raaz ◽  
Tiam-Ting Tee ◽  
...  

2020 ◽  
Vol 1002 ◽  
pp. 57-65
Author(s):  
Abdulkader M. Alakrach ◽  
Nik Noriman Zulkepli ◽  
Awad A. Al-Rashdi ◽  
Sam Sung Ting ◽  
Rosniza Hamzah ◽  
...  

This study aimed to develop novel Polylactic acid/ Halloysite (PLA/ HNTs) films which showed better properties when they were used for food packaging. They also displayed better mechanical, barrier, morphological and structural properties when the researchers analysed the impact of the electron beam irradiation on the nanomaterials. They prepared PLA-based nanocomposites containing 5 % w/w of HNTs using the solution casting process. These nanocomposites were further exposed to different ebeam doses (i.e., 0, 20, 40 and 60 kGy). The researchers assessed the effect of the electron beam irradiation on the various properties of the PLA. All the composites showed a homogenous dispersion and distribution of the HNTs in this PLA matrix. Results indicated that the nanocomposites showed better barrier properties in comparison to the neat PLA. Furthermore, the ebeam irradiation could increase the glass-transition temperature and lead to the development of more crosslinks, which increased the degradation temperature and hydrophilicity of the nanocomposites. In this study, the researchers showed that the PLA/HNTs films were effective materials that could be used for the electron beam processing of the pre-packed foods. The best effect was noted for the 20 kGy dosage which was used in the study.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2431
Author(s):  
Elena Manaila ◽  
Anton Airinei ◽  
Maria Daniela Stelescu ◽  
Maria Sonmez ◽  
Laurentia Alexandrescu ◽  
...  

Composites based on ethylene–propylene–diene terpolymer (EPDM), butyl/halobutyl rubber and nanosilica were prepared by melt mixing and subjected to different doses of electron beam irradiation. The effect of irradiation dose on the mechanical properties, morphology, glass transition temperature, thermal stability and water uptake was investigated. The efficiency of the crosslinking by electron beam irradiation was analyzed by Charlesby–Pinner parameter evaluation and crosslink density measurements. The scanning electron microscopy data showed a good dispersion of nanosilica in the rubber matrix. An improvement in hardness and 100% modulus was revealed by increasing irradiation dose up to 150 kGy. The interaction between polymer matrix and nanosilica was analyzed using the Kraus equation. Additionally, these results indicated that the mechanical properties, surface characteristics, and water uptake were dependent on crosslink characteristics.


Nukleonika ◽  
2015 ◽  
Vol 60 (3) ◽  
pp. 679-682 ◽  
Author(s):  
Magdalena Ptaszek ◽  
Leszek B. Orlikowski ◽  
Wojciech Migdał ◽  
Urszula Gryczka

Abstract Effectiveness of electron beam irradiation was evaluated against Phytophthora nicotianae var. nicotianae, the causal agent of stem base and root rot of tomato. In laboratory trials, irradiation of 7-day-old Phytophthora cultures growing on potato-dextrose-agar (PDA) medium with 1 kGy resulted in the disintegration of the pathogen’s hyphae. Increasing the irradiation dose to 3 kGy caused decay of the hyphae. Irradiation of infested stonewool with 5 kGy caused decrease of the pathogen population about 5 times. Application of 20 kGy completely eliminated the pathogen from stonewool. Irradiation of substratum resulted in significant increase of tomato seedlings healthiness, especially when the dose 20 kGy was applied.


2013 ◽  
Vol 770 ◽  
pp. 370-373 ◽  
Author(s):  
Pannipa Noithong ◽  
Panee Pakkong ◽  
Kittisakchai Naemchanthara

Study on the electron beam irradiation color change induction of spodumene (LiAlSi2O6) samples, which color exhibit green, pink and colorless. Characteristic the electron-beam irradiation dose were selected 30,000 kGy, 40,000 kGy and 50,000 kGy. The color and fading of spodumene samples were analyzed by UV-VIS spectrophotometer , crystal structure were determined by X-ray diffraction (XRD) spectrometer, free radical species of impurities were determined by Electron Spin Resonance (ESR) spectrometer before and after irradiation. The results revealed the color of spodumene samples changed after irradiation, from green spodumene became a little darker color, pink spodumene became green color, colorless spodumene became pink to purple color the results of the color analysis and fading displayed on the CIE L* a* b* color system, color change spodumene samples were determined by values changed of a* and b*. Color fade of spodumene were determined by values changed of L*. The results of all samples crystal structure analysis were shown on the XRD patterns of the JCPDS No. 89-6662 (Spodumene) with monoclinic structure. The radical analysis results of impurity elements, green and pink only appear the ESR pattern of manganese (Mn2+), and chromium (Cr3+), respectively. It can be conclusion that intensity of color change depend on the irradiation dose and impurity elements in spodumene samples.


Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1206 ◽  
Author(s):  
Maria Stelescu ◽  
Anton Airinei ◽  
Elena Manaila ◽  
Gabriela Craciun ◽  
Nicusor Fifere ◽  
...  

The effects of electron beam irradiation on the properties of ethylene propylene diene monomer (EPDM)/butyl rubber composites in presence of a polyfunctional monomer were investigated by means of differential scanning calorimetry (DSC), thermal analysis, scanning electron microscopy (SEM), attenuated total reflection absorption infrared spectroscopy (ATR-IR), and mechanical and surface energy measurements. The samples were exposed over a wide range of irradiation doses (20–150 kGy). The EPDM matrix was modified with butyl rubber, chlorobutyl rubber, and bromobutyl rubber. The gel content and crosslink density were found to increase with the electron beam irradiation dose. The values of the hardness and modulus increased gradually with the irradiation dose, while the tensile strength and elongation at break decreased with increasing irradiation dose. The EPDM/butyl rubber composites presented a higher thermal stability compared to the initial EPDM sample. The incorporation of butyl rubbers into the EPDM matrix led to an increase in material hydrophobicity. A similar trend was observed when the irradiation dose increased. The greatest change in the surface free energy and the contact angles occurs at an irradiation dose of 20 kGy. The Charlesby–Pinner plots prove the tendency to crosslinking as the irradiation dose increases.


2013 ◽  
Vol 848 ◽  
pp. 191-194
Author(s):  
Yan Jiang ◽  
Nai Yan Wang ◽  
Jian Wei Huang ◽  
Tao Hu ◽  
Ming Xin Zhang ◽  
...  

Recently 4-Chlorinatedphenol has been paid great concerns because of their persistency and extreme toxicity in the environment. The recent progresses on irradiation degradation of 4-Chlorinatedphenol is reviewed mainly in the paper.Got the irradiation technology joint approach to treat biological sewage is the most effective way. Polymer of refractory organic matter degradation by joint methods are efficient, the main problems existing in current sewage treatment by this method can simultaneously be solved. Keywords: Electron-beam irradiation; Biological treatment; Irradiation dose; Joint method


Sign in / Sign up

Export Citation Format

Share Document