New aspects concerning to the characterization and the relationship with the immune response in vivo of the spiny lobster Panulirus argus nitric oxide synthase

Nitric Oxide ◽  
2011 ◽  
Vol 25 (4) ◽  
pp. 396-406 ◽  
Author(s):  
Tania Rodríguez-Ramos ◽  
Yamila Carpio ◽  
Laida Ramos ◽  
Tirso Pons ◽  
Omar Farnós ◽  
...  
1995 ◽  
Vol 181 (1) ◽  
pp. 63-70 ◽  
Author(s):  
N K Worrall ◽  
W D Lazenby ◽  
T P Misko ◽  
T S Lin ◽  
C P Rodi ◽  
...  

The role of nitric oxide in the immune response to allogeneic tissue was explored in an in vivo cardiac transplant model in the rat. Nitric oxide production during organ rejection was demonstrated by elevations in systemic serum nitrite/nitrate levels and by electron paramagnetic resonance spectroscopy. Messenger RNA for the inducible nitric oxide synthase enzyme was detected in the rejecting allografted heart, but not in the nonrejecting isografted heart. The enzyme was demonstrated to be biologically active by the in vitro conversion of L-arginine to L-citrulline and was immunohistochemically localized to the infiltrating inflammatory cells. Treatment with aminoguanidine, a preferential inhibitor of the inducible nitric oxide synthase isoform, prevented the increased nitric oxide production in the transplanted organ and significantly attenuated the pathogenesis of acute rejection. Aminoguanidine treatment prolonged graft survival, improved graft contractile function, and significantly reduced the histologic grade of rejection. These results suggest an important role for nitric oxide in mediating the immune response to allogeneic tissue. Inhibition of inducible nitric oxide synthase may provide a novel therapeutic modality in the management of acute transplant rejection and of other immune-mediated processes.


2020 ◽  
Vol 47 (1) ◽  
pp. 197-202
Author(s):  
Ronja Hesthammer ◽  
◽  
Stian Dahle ◽  
Jon Peder Storesund ◽  
Torunn Eide ◽  
...  

The fraction of nitric oxide in exhaled gas (FENO) is decreased after exposure to hyperoxia in vivo, although the mechanisms for this decrease is not clear. A key co-factor for nitric oxide synthase (NOS), tetrahydrobiopterin (BH4), has been shown to be oxidized in vitro when exposed to hyperoxia. We hypothesized that the decrease of FENO is due to decreased enzymatic generation of NO due to oxidation of BH4. The present study was performed to investigate the relationship between levels of FENO and plasma BH4 following hyperoxic exposure in humans. Two groups of healthy subjects were exposed to 100% oxygen for 90 minutes. FENO was measured before and 10 minutes (n = 13) or 60 minutes (n = 14) after the exposure. Blood samples were collected at the same time points for quantification of biopterin levels (BH4, BH2 and B) using LC-MS/MS. Each subject was his or her own control, breathing air for 90 minutes on a separate day. Hyperoxia resulted in a 28.6 % decrease in FENO 10 minutes after exposure (p < 0.001), confirming previous findings. Moreover, hyperoxia also caused a 14.2% decrease in plasma BH4 (p = 0.012). No significant differences were observed in the group measured 60 minutes after exposure. No significant correlation was found between the changes in FENO and BH4 after the hyperoxic exposure (r = 0.052, p = 0.795), this might be due to the recovery of BH4 being faster than the recovery of FENO.


Circulation ◽  
1997 ◽  
Vol 96 (9) ◽  
pp. 3104-3111 ◽  
Author(s):  
Yoshihiro Fukumoto ◽  
Hiroaki Shimokawa ◽  
Toshiyuki Kozai ◽  
Toshiaki Kadokami ◽  
Kouichi Kuwata ◽  
...  

2001 ◽  
Vol 132 (3) ◽  
pp. 677-684 ◽  
Author(s):  
Angeles Alvarez ◽  
Laura Piqueras ◽  
Regina Bello ◽  
Amparo Canet ◽  
Lucrecia Moreno ◽  
...  

2011 ◽  
Vol 301 (3) ◽  
pp. H721-H729 ◽  
Author(s):  
Katsuhiko Noguchi ◽  
Naobumi Hamadate ◽  
Toshihiro Matsuzaki ◽  
Mayuko Sakanashi ◽  
Junko Nakasone ◽  
...  

An elevation of oxidized forms of tetrahydrobiopterin (BH4), especially dihydrobiopterin (BH2), has been reported in the setting of oxidative stress, such as arteriosclerotic/atherosclerotic disorders, where endothelial nitric oxide synthase (eNOS) is dysfunctional, but the role of BH2 in the regulation of eNOS activity in vivo remains to be evaluated. This study was designed to clarify whether increasing BH2 concentration causes endothelial dysfunction in rats. To increase vascular BH2 levels, the BH2 precursor sepiapterin (SEP) was intravenously given after the administration of the specific dihydrofolate reductase inhibitor methotrexate (MTX) to block intracellular conversion of BH2 to BH4. MTX/SEP treatment did not significantly affect aortic BH4 levels compared with control treatment. However, MTX/SEP treatment markedly augmented aortic BH2 levels (291.1 ± 29.2 vs. 33.4 ± 6.4 pmol/g, P < 0.01) in association with moderate hypertension. Treatment with MTX alone did not significantly alter blood pressure or BH4 levels but decreased the BH4-to-BH2 ratio. Treatment with MTX/SEP, but not with MTX alone, impaired ACh-induced vasodilator and depressor responses compared with the control treatment (both P < 0.05) and also aggravated ACh-induced endothelium-dependent relaxations ( P < 0.05) of isolated aortas without affecting sodium nitroprusside-induced endothelium-independent relaxations. Importantly, MTX/SEP treatment significantly enhanced aortic superoxide production, which was diminished by NOS inhibitor treatment, and the impaired ACh-induced relaxations were reversed with SOD ( P < 0.05), suggesting the involvement of eNOS uncoupling. These results indicate, for the first time, that increasing BH2 causes eNOS dysfunction in vivo even in the absence of BH4 deficiency, demonstrating a novel insight into the regulation of endothelial function.


ChemInform ◽  
2010 ◽  
Vol 32 (32) ◽  
pp. no-no
Author(s):  
Haydn Beaton ◽  
Nigel Boughton-Smith ◽  
Peter Hamley ◽  
Anant Ghelani ◽  
David J. Nicholls ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document