T.P.1 06 Improvement of muscle mass after injection of AAV vectors expressing either myostatin shRNA or activin receptor IIb shRNA

2006 ◽  
Vol 16 (9-10) ◽  
pp. 686
Author(s):  
J. Dumonceaux ◽  
S. Marie ◽  
L. Garcia
2006 ◽  
Vol 13 ◽  
pp. S14
Author(s):  
Julie Dumonceaux ◽  
Solenne Marie ◽  
Luis Garcia

2011 ◽  
Vol 21 (9-10) ◽  
pp. 703
Author(s):  
W.M.H. Hoogaars ◽  
E. Mouisel ◽  
K. Relizani ◽  
A. Pasternack ◽  
C. Hourde ◽  
...  

Endocrinology ◽  
2010 ◽  
Vol 151 (9) ◽  
pp. 4289-4300 ◽  
Author(s):  
Alan Koncarevic ◽  
Milton Cornwall-Brady ◽  
Abigail Pullen ◽  
Monique Davies ◽  
Dianne Sako ◽  
...  

Androgen deprivation, a consequence of hypogonadism, certain cancer treatments, or normal aging in men, leads to loss of muscle mass, increased adiposity, and osteoporosis. In the present study, using a soluble chimeric form of activin receptor type IIB (ActRIIB) we sought to offset the adverse effects of androgen deprivation on muscle, adipose tissue, and bone. Castrated (ORX) or sham-operated (SHAM) mice received either TBS [vehicle-treated (VEH)] or systemic administration of ActRIIB-mFc, a soluble fusion protein comprised of a form of the extracellular domain of ActRIIB fused to a murine IgG2aFc subunit. In vivo body composition imaging demonstrated that ActRIIB-mFc treatment results in increased lean tissue mass of 23% in SHAM mice [19.02 ± 0.42 g (VEH) versus 23.43 ± 0.35 g (ActRIIB-mFc), P < 0.00001] and 26% in ORX mice [15.59 ± 0.26 g (VEH) versus 19.78 ± 0.26 g (ActRIIB-mFc), P < 0.00001]. Treatment also caused a decrease in adiposity of 30% in SHAM mice [5.03 ± 0.48 g (VEH) versus 3.53 ± 0.19 g (ActRIIB-mFc), NS] and 36% in ORX mice [7.12 ± 0.53 g (VEH) versus 4.57 ± 0.28 g (ActRIIB-mFc), P < 0.001]. These changes were also accompanied by altered serum levels of leptin, adiponectin, and insulin, as well as by prevention of steatosis (fatty liver) in ActRIIB-mFc-treated ORX mice. Finally, ActRIIB-mFc prevented loss of bone mass in ORX mice as assessed by whole body dual x-ray absorptiometry and micro-computed tomography of proximal tibias. The data demonstrate that treatment with ActRIIB-mFc restored muscle mass, adiposity, and bone quality to normal levels in a mouse model of androgen deprivation, thereby alleviating multiple adverse consequences of such therapy.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9673
Author(s):  
Jingan Wang ◽  
Kaijun Zhang ◽  
Xin Hou ◽  
Wucheng Yue ◽  
He Yang ◽  
...  

Activin receptor IIB (ActRIIB) is a serine/threonine-kinase receptor binding with transforming growth factor-β (TGF-β) superfamily ligands to participate in the regulation of muscle mass in vertebrates. However, its structure and function in crustaceans remain unknown. In this study, the ActRIIB gene in Eriocheir sinensis (Es-ActRIIB) was cloned and obtained with a 1,683 bp open reading frame, which contains the characteristic domains of TGF-β type II receptor superfamily, encoding 560 amino acids. The mRNA expression of Es-ActRIIB was the highest in hepatopancreas and the lowest in muscle at each molting stage. After injection of Es-ActRIIB double-stranded RNA during one molting cycle, the RNA interference (RNAi) group showed higher weight gain rate, higher specific growth rate, and lower hepatopancreas index compared with the control group. Meanwhile, the RNAi group displayed a significantly increased content of hydrolytic amino acid in both hepatopancreas and muscle. The RNAi group also displayed slightly higher contents of saturated fatty acid and monounsaturated fatty acid but significantly decreased levels of polyunsaturated fatty acid compared with the control group. After RNAi on Es-ActRIIB, the mRNA expressions of five ActRIIB signaling pathway genes showed that ActRI and forkhead box O (FoxO) were downregulated in hepatopancreas and muscle, but no significant expression differences were found in small mother against decapentaplegic (SMAD) 3, SMAD4 and mammalian target of rapamycin. The mRNA expression s of three lipid metabolism-related genes (carnitine palmitoyltransferase 1β (CPT1β), fatty acid synthase, and fatty acid elongation) were significantly downregulated in both hepatopancreas and muscle with the exception of CPT1β in muscles. These results indicate that ActRIIB is a functionally conservative negative regulator in growth mass, and protein and lipid metabolism could be affected by inhibiting ActRIIB signaling in crustacean.


2017 ◽  
Author(s):  
◽  
Youngjae Jeong

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Osteogenesis Imperfecta (OI) is a heritable connective tissue disorder primarily due to mutations in the type I collagen containing tissues, such as bone, skin and blood vessels. The clinical manifestations of OI include skeletal deformity and fragility, scoliosis, growth retardation, and hearing loss. There is no cure for OI and current treatment is limited with anti-resorptive drugs, the bisphosphonates, and/or surgical intervention, which comes with adverse side-effects and high risk of device failure, respectively. Thus identifying an alternative strategy to strengthen the skeletal properties of OI is still critically needed. Bone and muscle are intimate tissues in a relation to their proximate locations and biochemical cross-talks. Bone responds and adapts to external stimuli, mainly the muscle mass and contractile strength, to alter its shape and mass due to its mechanosensing characteristic, and this makes muscle and bone mass to be positively correlated in normal condition. As a potential therapeutic option, we sought to enhance the muscle mass and function via physical exercise to indirectly improve the bone properties in OI. We have investigated the effects of the threadmill exercise in G610C OI mouse model, which has a glycine to cysteine substitution at position 610 of pro[alpha]2 collagen chain and mimics the phenotype of mild type I/IV OI individuals. Treadmill exercised heterozygous G610C (+/G610C) mice exhibited similar exercise capacity as wildtype littermates and had increased femoral stiffness without altering bone biomechanical strength. Muscle mass can be regulated by myostatin, a negative regulator of muscle growth, and deficiency of myostatin in mice lead to abnormal muscle fiber growth. As an alternative approach, we have investigated the effects of pharmacological myostatin inhibition by using a soluble fusion protein activin receptor type IIB-mFc (sActRIIB-mFc). Myostatin signals through activin receptor type IIB (ActRIIB) on cell surface to regulate downstream signaling pathways and the sActRIIB-mFc act as "ligand trap" to bind any circulating myostatin proteins and prevent them from binding to their endogenous cellular receptors. As first part of this study, we investigated the effects of sActRIIB-mFc on muscle properties of two molecularly distinct OI mouse models, G610C and oim. Unlike G610C mouse model, homozygous oim (oim/oim) has a mutation in col1[alpha]2 genes thus synthesizing nonfunctional pro[alpha]2(I) collagen chain and leading to synthesis of homotrimeric [alpha]1(I)3, instead of normal heterotrimeric [alpha]1(I)2[alpha]2(I). oim/oim also exhibit muscle atrophy with compromised muscle contractile strength. 8 weeks of bi-weekly sActRIIB-mFc (10mg/kg) treatment in +/G610C and oim/oim mice was able to induce the increase in body weight and skeletal muscle mass. In addition, oim/oim mice exhibited increase in absolute contractile strength without altering relative and specific muscle function, suggesting a potential therapeutic option for muscle weakness in oim/oim mice. As second part of this study, we investigated the effects of sActRIIB-mFc on skeletal properties of these two OI mouse models. sActRIIB-mFc treated +/G610C and oim/oim mice exhibited increase in trabecular bone microarchitecture, and +/G610C mice had further increase in cortical bone geometry and biomechanical strength. Overall, my current study demonstrated that sActRIIB-mFc treatment was effective in both G610C and oim mouse models to enhance their muscle and bone properties, although they exhibited different responses in such that G610C mice did not show a statistically significant increase in muscle contractile function while the oim mice did not show increase in cortical bone geometry and biomechanical strength. I postulate that this was potentially due to the differences in molecular mutation and severity of the phenotype, thus more thorough investigation in molecular and cellular mechanisms of sActRIIB-mFc in these two different OI mouse models will hold promise in developing more targeted therapeutic option for OI.


2015 ◽  
Vol 119 (6) ◽  
pp. 633-642 ◽  
Author(s):  
Lyle W. Babcock ◽  
Mark Knoblauch ◽  
Mark S. F. Clarke

Chronic unloading induces decrements in muscle size and strength. This adaptation is governed by a number of molecular factors including myostatin, a potent negative regulator of muscle mass. Myostatin must first be secreted into the circulation and then bind to the membrane-bound activin receptor IIB (actRIIB) to exert its atrophic action. Therefore, we hypothesized that myofiber type-specific atrophy observed after hindlimb suspension (HLS) would be related to myofiber type-specific expression of myostatin and/or actRIIB. Wistar rats underwent HLS for 10 days, after which the tibialis anterior was harvested for frozen cross sectioning. Simultaneous multichannel immunofluorescent staining combined with differential interference contrast imaging was employed to analyze myofiber type-specific expression of myostatin and actRIIB and myofiber type cross-sectional area (CSA) across fiber types, myonuclei, and satellite cells. Hindlimb suspension (HLS) induced significant myofiber type-specific atrophy in myosin heavy chain (MHC) IIx ( P < 0.05) and MHC IIb myofibers ( P < 0.05). Myostatin staining associated with myonuclei was less in HLS rats compared with controls, while satellite cell staining for myostatin remained unchanged. In contrast, the total number myonuclei and satellite cells per myofiber was reduced in HLS compared with ambulatory control rats ( P < 0.01). Sarcoplasmic actRIIB staining differed between myofiber types (I < IIa < IIx < IIb) independent of loading conditions. Myofiber types exhibiting the greatest cytoplasmic staining of actRIIB corresponded to those exhibiting the greatest degree of atrophy following HLS. Our data suggest that differential expression of actRIIB may be responsible for myostatin-induced myofiber type-selective atrophy observed during chronic unloading.


Bone Research ◽  
2015 ◽  
Vol 3 (1) ◽  
Author(s):  
Douglas J. DiGirolamo ◽  
Vandana Singhal ◽  
Xiaoli Chang ◽  
Se-Jin Lee ◽  
Emily L. Germain-Lee

Sign in / Sign up

Export Citation Format

Share Document