scholarly journals A Soluble Activin Receptor Type IIB Prevents the Effects of Androgen Deprivation on Body Composition and Bone Health

Endocrinology ◽  
2010 ◽  
Vol 151 (9) ◽  
pp. 4289-4300 ◽  
Author(s):  
Alan Koncarevic ◽  
Milton Cornwall-Brady ◽  
Abigail Pullen ◽  
Monique Davies ◽  
Dianne Sako ◽  
...  

Androgen deprivation, a consequence of hypogonadism, certain cancer treatments, or normal aging in men, leads to loss of muscle mass, increased adiposity, and osteoporosis. In the present study, using a soluble chimeric form of activin receptor type IIB (ActRIIB) we sought to offset the adverse effects of androgen deprivation on muscle, adipose tissue, and bone. Castrated (ORX) or sham-operated (SHAM) mice received either TBS [vehicle-treated (VEH)] or systemic administration of ActRIIB-mFc, a soluble fusion protein comprised of a form of the extracellular domain of ActRIIB fused to a murine IgG2aFc subunit. In vivo body composition imaging demonstrated that ActRIIB-mFc treatment results in increased lean tissue mass of 23% in SHAM mice [19.02 ± 0.42 g (VEH) versus 23.43 ± 0.35 g (ActRIIB-mFc), P < 0.00001] and 26% in ORX mice [15.59 ± 0.26 g (VEH) versus 19.78 ± 0.26 g (ActRIIB-mFc), P < 0.00001]. Treatment also caused a decrease in adiposity of 30% in SHAM mice [5.03 ± 0.48 g (VEH) versus 3.53 ± 0.19 g (ActRIIB-mFc), NS] and 36% in ORX mice [7.12 ± 0.53 g (VEH) versus 4.57 ± 0.28 g (ActRIIB-mFc), P < 0.001]. These changes were also accompanied by altered serum levels of leptin, adiponectin, and insulin, as well as by prevention of steatosis (fatty liver) in ActRIIB-mFc-treated ORX mice. Finally, ActRIIB-mFc prevented loss of bone mass in ORX mice as assessed by whole body dual x-ray absorptiometry and micro-computed tomography of proximal tibias. The data demonstrate that treatment with ActRIIB-mFc restored muscle mass, adiposity, and bone quality to normal levels in a mouse model of androgen deprivation, thereby alleviating multiple adverse consequences of such therapy.

Bone Reports ◽  
2016 ◽  
Vol 5 ◽  
pp. 70-80 ◽  
Author(s):  
Kim L. Beaucage ◽  
Steven I. Pollmann ◽  
Stephen M. Sims ◽  
S. Jeffrey Dixon ◽  
David W. Holdsworth

1998 ◽  
Vol 275 (2) ◽  
pp. E249-E258 ◽  
Author(s):  
Dympna Gallagher ◽  
Daniel Belmonte ◽  
Paul Deurenberg ◽  
Zimian Wang ◽  
Norman Krasnow ◽  
...  

Investigators have expressed interest in the associations between resting energy expenditure (REE) and body mass for over a century. Traditionally, descriptive models using regression analysis are applied, linking REE with metabolically active compartments such as body cell mass (BCM) and fat-free body mass (FFM). Recently developed whole body magnetic resonance imaging (MRI) and echocardiography methods now allow estimation of all major organs and tissue volumes in vivo. Because measured values are available for REE, BCM, and FFM content of individual organs and tissues, it should now be possible to develop energy expenditure-body composition estimation models based on MRI-measured organ-tissue volumes. Specifically, the present investigation tested the hypothesis that in vivo estimation of whole body REE, BCM, and FFM is possible using MRI- and echocardiography-derived organ volumes combined with previously reported organ-tissue metabolic rates and chemical composition. Thirteen subjects (5 females, 8 males) had REE, BCM, and FFM measured by indirect calorimetry, whole body40K counting, and dual-energy X-ray absorptiometry, respectively. Models developed from estimated and measured variables were highly correlated, with no significant differences between those estimated and measured [e.g., calculated vs. measured REE: r = 0.92, P < 0.001; (mean ± SD) 6,962 ± 1,455 and 7,045 ± 1,450 kJ/day, respectively ( P = not significant)]. Strong associations were observed between REE, individual or combined organ weights, BCM, and FFM that provide new insights into earlier observed metabolic phenomona. The present approach, the first to establish an energy expenditure-body composition link with a mechanistic model in vivo, has the potential to greatly expand our knowledge of energy expenditure-body size relationships in humans.


2015 ◽  
Vol 75 (2) ◽  
pp. 181-187 ◽  
Author(s):  
Manfred J. Müller ◽  
Wiebke Braun ◽  
Maryam Pourhassan ◽  
Corinna Geisler ◽  
Anja Bosy-Westphal

The aim of this review is to extend present concepts of body composition and to integrate it into physiology. In vivo body composition analysis (BCA) has a sound theoretical and methodological basis. Present methods used for BCA are reliable and valid. Individual data on body components, organs and tissues are included into different models, e.g. a 2-, 3-, 4- or multi-component model. Today the so-called 4-compartment model as well as whole body MRI (or computed tomography) scans are considered as gold standards of BCA. In practice the use of the appropriate method depends on the question of interest and the accuracy needed to address it. Body composition data are descriptive and used for normative analyses (e.g. generating normal values, centiles and cut offs). Advanced models of BCA go beyond description and normative approaches. The concept of functional body composition (FBC) takes into account the relationships between individual body components, organs and tissues and related metabolic and physical functions. FBC can be further extended to the model of healthy body composition (HBC) based on horizontal (i.e. structural) and vertical (e.g. metabolism and its neuroendocrine control) relationships between individual components as well as between component and body functions using mathematical modelling with a hierarchical multi-level multi-scale approach at the software level. HBC integrates into whole body systems of cardiovascular, respiratory, hepatic and renal functions. To conclude BCA is a prerequisite for detailed phenotyping of individuals providing a sound basis for in depth biomedical research and clinical decision making.


2008 ◽  
Vol 294 (1) ◽  
pp. E168-E175 ◽  
Author(s):  
Jamileh Movassat ◽  
Danièle Bailbé ◽  
Cécile Lubrano-Berthelier ◽  
Françoise Picarel-Blanchot ◽  
Eric Bertin ◽  
...  

The adult Goto-Kakizaki (GK) rat is characterized by impaired glucose-induced insulin secretion in vivo and in vitro, decreased β-cell mass, decreased insulin sensitivity in the liver, and moderate insulin resistance in muscles and adipose tissue. GK rats do not exhibit basal hyperglycemia during the first 3 wk after birth and therefore could be considered prediabetic during this period. Our aim was to identify the initial pathophysiological changes occurring during the prediabetes period in this model of type 2 diabetes (T2DM). To address this, we investigated β-cell function, insulin sensitivity, and body composition in normoglycemic prediabetic GK rats. Our results revealed that the in vivo secretory response of GK β-cells to glucose is markedly reduced and the whole body insulin sensitivity is increased in the prediabetic GK rats in vivo. Moreover, the body composition of suckling GK rats is altered compared with age-matched Wistar rats, with an increase of the number of adipocytes before weaning despite a decreased body weight and lean mass in the GK rats. None of these changes appeared to be due to the postnatal nutritional environment of GK pups as demonstrated by cross-fostering GK pups with nondiabetic Wistar dams. In conclusion, in the GK model of T2DM, β-cell dysfunction associated with increased insulin sensitivity and the alteration of body composition are proximal events that might contribute to the establishment of overt diabetes in adult GK rats.


2019 ◽  
Vol 36 (1) ◽  
pp. 95-103 ◽  
Author(s):  
Yunan Zhou ◽  
Matthias Hellberg ◽  
Thomas Hellmark ◽  
Peter Höglund ◽  
Naomi Clyne

Abstract Background Sarcopenia increases as renal function declines and is associated with higher morbidity and mortality. Myostatin is a negative regulator of muscle growth. Its expression in response to exercise is unclear. In this prespecified substudy of the Renal Exercise (RENEXC) trial, we investigated the effects of 12 months of exercise training on sarcopenia, muscle mass and plasma myostatin and the relationships between physical performance, muscle mass and plasma myostatin. Methods A total of 151 non-dialysis-dependent patients (average measured glomerular filtration rate 23 ± 8 mL/min/1.73 m2), irrespective of age or comorbidity, were randomly assigned to either strength or balance in combination with endurance training. Body composition was measured with dual-energy X-ray absorptiometry. Plasma myostatin was analysed using enzyme-linked immunosorbent assay kits. Results After 12 months, the prevalence of sarcopenia was unchanged, leg and whole-body lean mass increased significantly in the balance group and was unchanged in the strength group. Whole fat mass decreased significantly in both groups. There were no significant between-group differences in sarcopenia or body composition. Plasma myostatin levels increased significantly in both groups, with a significant difference in favour of the strength group. Plasma myostatin was significantly positively related to muscle mass and physical performance at baseline, but these relationships were attenuated after 12 months. Conclusions Exercise training seems to be effective in preventing sarcopenia and maintaining muscle mass in non-dialysis-dependent patients with chronic kidney disease (CKD). However, the role of plasma myostatin on muscle mass and physical performance in patients with CKD warrants further study.


2013 ◽  
Vol 20 (5) ◽  
pp. 621-632 ◽  
Author(s):  
Thine Hvid ◽  
Kamilla Winding ◽  
Anders Rinnov ◽  
Thomas Dejgaard ◽  
Carsten Thomsen ◽  
...  

Insulin resistance and changes in body composition are side effects of androgen deprivation therapy (ADT) given to prostate cancer patients. The present study investigated whether endurance training improves insulin sensitivity and body composition in ADT-treated prostate cancer patients. Nine men undergoing ADT for prostate cancer and ten healthy men with normal testosterone levels underwent 12 weeks of endurance training. Primary endpoints were insulin sensitivity (euglycemic–hyperinsulinemic clamps with concomitant glucose-tracer infusion) and body composition (dual-energy X-ray absorptiometry and magnetic resonance imaging). The secondary endpoint was systemic inflammation. Statistical analysis was carried out using two-way ANOVA. Endurance training increased VO2max(ml(O2)/min per kg) by 11 and 13% in the patients and controls respectively (P<0.0001). The patients and controls demonstrated an increase in peripheral tissue insulin sensitivity of 14 and 11% respectively (P<0.05), with no effect on hepatic insulin sensitivity (P=0.32). Muscle protein content of GLUT4 (SLC2A4) and total AKT (AKT1) was also increased in response to the training (P<0.05 andP<0.01 respectively). Body weight (P<0.0001) and whole-body fat mass (FM) (P<0.01) were reduced, while lean body mass (P=0.99) was unchanged. Additionally, reductions were observed in abdominal (P<0.01), subcutaneous (P<0.05), and visceral (P<0.01) FM amounts. The concentrations of plasma markers of systemic inflammation were unchanged in response to the training. No group×time interactions were observed, except for thigh intermuscular adipose tissue (IMAT) (P=0.01), reflecting a significant reduction in the amount of IMAT in the controls (P<0.05) not observed in the patients (P=0.64). In response to endurance training, ADT-treated prostate cancer patients exhibited improved insulin sensitivity and body composition to a similar degree as eugonadal men.


2019 ◽  
Vol 17 (10) ◽  
pp. 1211-1220 ◽  
Author(s):  
Dennis R. Taaffe ◽  
Robert U. Newton ◽  
Nigel Spry ◽  
David J. Joseph ◽  
Daniel A. Galvão

Background: Androgen deprivation therapy (ADT) in the management of prostate cancer (PCa) results in an array of adverse effects, and exercise is one strategy to counter treatment-related musculoskeletal toxicities. This study assessed the prevalence of exercise responsiveness in men with PCa undergoing ADT in terms of body composition, muscle strength, and physical function. Methods: Prospective analyses were performed in 152 men (aged 43–90 years) with PCa receiving ADT who were engaged in resistance exercise combined with aerobic or impact training for 3 to 6 months. Whole-body lean mass and fat mass (FM), trunk FM, and appendicular skeletal muscle were assessed with dual x-ray absorptiometry; upper and lower body muscle strength were assessed with the one-repetition maximum; and physical function was assessed with a battery of tests (6-m usual, fast, and backward walk; 400-m walk; repeated chair rise; stair climb). Results: Significant improvements were seen (P<.01) in lean mass (0.4±1.4 kg [range, −2.8 to +4.1 kg]), appendicular skeletal muscle (0.2±0.8 kg [range, −1.9 to +1.9 kg]), and all measures of muscle strength (chest press, 2.9±5.8 kg [range, −12.5 to +37.5 kg]; leg press, 29.2±27.6 kg [range, −50.0 to +140.0 kg]) and physical function (from −0.1±0.5 s [range, +1.3 to −2.1 s] for the 6-m walk; to −8.6±15.2 s [range, +25.2 to −69.7 s] for the 400-m walk). An increase in FM was also noted (0.6±1.8 kg [range, −3.6 to +7.3 kg]; P<.01). A total of 21 men did not exhibit a favorable response in at least one body composition component, 10 did not experience improved muscle strength, and 2 did not have improved physical function. However, all patients responded in at least one of the areas, and 120 (79%) favorably responded in all 3 areas. Conclusions: Despite considerable heterogeneity, most men with PCa receiving ADT responded to resistance-based multimodal exercise, and therefore our findings indicate that this form of exercise can be confidently prescribed to produce beneficial effects during active treatment.


2017 ◽  
Author(s):  
◽  
Youngjae Jeong

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Osteogenesis Imperfecta (OI) is a heritable connective tissue disorder primarily due to mutations in the type I collagen containing tissues, such as bone, skin and blood vessels. The clinical manifestations of OI include skeletal deformity and fragility, scoliosis, growth retardation, and hearing loss. There is no cure for OI and current treatment is limited with anti-resorptive drugs, the bisphosphonates, and/or surgical intervention, which comes with adverse side-effects and high risk of device failure, respectively. Thus identifying an alternative strategy to strengthen the skeletal properties of OI is still critically needed. Bone and muscle are intimate tissues in a relation to their proximate locations and biochemical cross-talks. Bone responds and adapts to external stimuli, mainly the muscle mass and contractile strength, to alter its shape and mass due to its mechanosensing characteristic, and this makes muscle and bone mass to be positively correlated in normal condition. As a potential therapeutic option, we sought to enhance the muscle mass and function via physical exercise to indirectly improve the bone properties in OI. We have investigated the effects of the threadmill exercise in G610C OI mouse model, which has a glycine to cysteine substitution at position 610 of pro[alpha]2 collagen chain and mimics the phenotype of mild type I/IV OI individuals. Treadmill exercised heterozygous G610C (+/G610C) mice exhibited similar exercise capacity as wildtype littermates and had increased femoral stiffness without altering bone biomechanical strength. Muscle mass can be regulated by myostatin, a negative regulator of muscle growth, and deficiency of myostatin in mice lead to abnormal muscle fiber growth. As an alternative approach, we have investigated the effects of pharmacological myostatin inhibition by using a soluble fusion protein activin receptor type IIB-mFc (sActRIIB-mFc). Myostatin signals through activin receptor type IIB (ActRIIB) on cell surface to regulate downstream signaling pathways and the sActRIIB-mFc act as "ligand trap" to bind any circulating myostatin proteins and prevent them from binding to their endogenous cellular receptors. As first part of this study, we investigated the effects of sActRIIB-mFc on muscle properties of two molecularly distinct OI mouse models, G610C and oim. Unlike G610C mouse model, homozygous oim (oim/oim) has a mutation in col1[alpha]2 genes thus synthesizing nonfunctional pro[alpha]2(I) collagen chain and leading to synthesis of homotrimeric [alpha]1(I)3, instead of normal heterotrimeric [alpha]1(I)2[alpha]2(I). oim/oim also exhibit muscle atrophy with compromised muscle contractile strength. 8 weeks of bi-weekly sActRIIB-mFc (10mg/kg) treatment in +/G610C and oim/oim mice was able to induce the increase in body weight and skeletal muscle mass. In addition, oim/oim mice exhibited increase in absolute contractile strength without altering relative and specific muscle function, suggesting a potential therapeutic option for muscle weakness in oim/oim mice. As second part of this study, we investigated the effects of sActRIIB-mFc on skeletal properties of these two OI mouse models. sActRIIB-mFc treated +/G610C and oim/oim mice exhibited increase in trabecular bone microarchitecture, and +/G610C mice had further increase in cortical bone geometry and biomechanical strength. Overall, my current study demonstrated that sActRIIB-mFc treatment was effective in both G610C and oim mouse models to enhance their muscle and bone properties, although they exhibited different responses in such that G610C mice did not show a statistically significant increase in muscle contractile function while the oim mice did not show increase in cortical bone geometry and biomechanical strength. I postulate that this was potentially due to the differences in molecular mutation and severity of the phenotype, thus more thorough investigation in molecular and cellular mechanisms of sActRIIB-mFc in these two different OI mouse models will hold promise in developing more targeted therapeutic option for OI.


Sign in / Sign up

Export Citation Format

Share Document