RNA profiling discloses a link between circadian genes and muscle damage in Duchenne Muscular Dystrophy

2015 ◽  
Vol 25 ◽  
pp. S246
Author(s):  
C. Scotton ◽  
A. Armaroli ◽  
H. Osman ◽  
M. Falzarano ◽  
R. Capogrosso ◽  
...  
2016 ◽  
Vol 26 ◽  
pp. S157-S158
Author(s):  
A. Armaroli ◽  
C. Scotton ◽  
H. Osman ◽  
M. Falzarano ◽  
R. Capogrosso ◽  
...  

2021 ◽  
Vol 2 (3) ◽  
pp. 159-166
Author(s):  
Alexey L. Kurenkov ◽  
Lyudmila M. Kuzenkova ◽  
Lale A. Pak ◽  
Bella I. Bursagova ◽  
Tatyana V. Podkletnova ◽  
...  

Duchenne muscular dystrophy (DMD) is a disease with an X-linked recessive type of inheritance, belonging to a group of disorders with primary muscle damage, caused by pathogenic variants in the DMD gene and associated with dysfunction of the dystrophin protein. Since DMD is manifested by the gradual development of progressive, mainly proximal muscle weakness, the differential diagnosis is primarily carried out in the group of diseases with muscle damage - myopathies. Among these diseases, the leading candidates for differential diagnosis are hereditary myopathies (limb-girdle muscular dystrophies, facioscapulohumeral dystrophy, congenital muscular dystrophies, glycogenoses - the most common juvenile form of glycogenosis type II (Pompe disease)) and, much less often, congenital myopathies and other conditions of neuromuscular diseases). When conducting a differential diagnosis in a child with suspected DMD, the age of the onset of the disease, early initial clinical manifestations and the development of symptoms as they grow, genealogical analysis, laboratory tests (the level of creatine kinase, aspartate aminotransferase, alanine aminotransferase in blood serum), instrumental (electromyography, magnetic resonance imaging of the brain and muscles) and molecular genetics (polymerase chain reaction, multiplex ligation-dependent probe amplification, next-generation sequencing, Sanger sequencing, etc.) of studies, and in some cases, muscle biopsy data. Knowledge of the nuances of the differential diagnosis allows establishing a genetic diagnosis of DMD as early as possible, which is extremely important for the formation of the prognosis of the disease and the implementation of all available treatment methods, including pathogenetic therapy, and is also necessary for medical and genetic counselling of families with DMD patients.


2013 ◽  
Vol 264 (1-2) ◽  
pp. 41-47 ◽  
Author(s):  
Samara Camaçari de Carvalho ◽  
Leticia Montanholi Apolinário ◽  
Selma Maria Michelin Matheus ◽  
Humberto Santo Neto ◽  
Maria Julia Marques

2017 ◽  
Vol 122 (4) ◽  
pp. 828-843 ◽  
Author(s):  
Roberta Francesca Capogrosso ◽  
Paola Mantuano ◽  
Anna Cozzoli ◽  
Francesca Sanarica ◽  
Ada Maria Massari ◽  
...  

Progressive weakness is a typical feature of Duchenne muscular dystrophy (DMD) patients and is exacerbated in the benign mdx mouse model by in vivo treadmill exercise. We hypothesized a different threshold for functional adaptation of mdx muscles in response to the duration of the exercise protocol. In vivo weakness was confirmed by grip strength after 4, 8, and 12 wk of exercise in mdx mice. Torque measurements revealed that exercise-related weakness in mdx mice correlated with the duration of the protocol, while wild-type (WT) mice were stronger. Twitch and tetanic forces of isolated diaphragm and extensor digitorum longus (EDL) muscles were lower in mdx compared with WT mice. In mdx, both muscle types exhibited greater weakness after a single exercise bout, but only in EDL after a long exercise protocol. As opposite to WT muscles, mdx EDL ones did not show any exercise-induced adaptations against eccentric contraction force drop. qRT-PCR analysis confirmed the maladaptation of genes involved in metabolic and structural remodeling, while damage-related genes remained significantly upregulated and angiogenesis impaired. Phosphorylated AMP kinase level increased only in exercised WT muscle. The severe histopathology and the high levels of muscular TGF-β1 and of plasma matrix metalloproteinase-9 confirmed the persistence of muscle damage in mdx mice. Therefore, dystrophic muscles showed a partial degree of functional adaptation to chronic exercise, although not sufficient to overcome weakness nor signs of damage. The improved understanding of the complex mechanisms underlying maladaptation of dystrophic muscle paves the way to a better managment of DMD patients. NEW & NOTEWORTHY We focused on the adaptation/maladaptation of dystrophic mdx mouse muscles to a standard protocol of exercise to provide guidance in the development of more effective drug and physical therapies in Duchenne muscular dystrophy. The mdx muscles showed a modest functional adaptation to chronic exercise, but it was not sufficient to overcome the progressive in vivo weakness, nor to counter signs of muscle damage. Therefore, a complex involvement of multiple systems underlies the maladaptive response of dystrophic muscle.


2009 ◽  
Vol 23 (10) ◽  
pp. 3335-3346 ◽  
Author(s):  
Simona Greco ◽  
Marco De Simone ◽  
Claudia Colussi ◽  
Germana Zaccagnini ◽  
Pasquale Fasanaro ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1366
Author(s):  
Ankita Tulangekar ◽  
Tamar E. Sztal

Duchenne muscular dystrophy (DMD) is a severe and progressive, X-linked, neuromuscular disorder caused by mutations in the dystrophin gene. In DMD, the lack of functional dystrophin protein makes the muscle membrane fragile, leaving the muscle fibers prone to damage during contraction. Muscle degeneration in DMD patients is closely associated with a prolonged inflammatory response, and while this is important to stimulate regeneration, inflammation is also thought to exacerbate muscle damage. Neutrophils are one of the first immune cells to be recruited to the damaged muscle and are the first line of defense during tissue injury or infection. Neutrophils can promote inflammation by releasing pro-inflammatory cytokines and compounds, including myeloperoxidase (MPO) and neutrophil elastase (NE), that lead to oxidative stress and are thought to have a role in prolonging inflammation in DMD. In this review, we provide an overview of the roles of the innate immune response, with particular focus on mechanisms used by neutrophils to exacerbate muscle damage and impair regeneration in DMD.


Sign in / Sign up

Export Citation Format

Share Document