Gas leakage rate through reinforced concrete shear walls: Numerical study

2005 ◽  
Vol 235 (21) ◽  
pp. 2246-2260 ◽  
Author(s):  
Ting Wang ◽  
Tara C. Hutchinson
2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Zhi Zhou ◽  
Jiang Qian ◽  
Wei Huang

Steel plate reinforced concrete (SPRC) shear wall consists of steel plate encased in the concrete, in which the material advantages of both concrete and steel are utilized. The lateral resistance and deformation capacity of the shear wall are greatly improved. This paper investigates the deformation capacity of the SPRC shear wall under cyclic loads. A nonlinear 3-D finite element model in ABAQUS was developed and validated against published experimental results. Then, a parametric study was conducted to obtain the yield and ultimate rotation of SPRC shear walls with flexural failure. By statistical analyses, formulas for the yield and ultimate rotation of SPRC shear wall were proposed.


2011 ◽  
Vol 101-102 ◽  
pp. 644-647
Author(s):  
Gui Rong Liu ◽  
Fu Lai Qu ◽  
Yu Pu Song ◽  
Chang Yong Li

A simple method based on the well-known sectional analysis approach is presented to trace the structural behavior of reinforced concrete (RC) shear walls exposed to fire. It is similar to the approaches described in the existing literature but it does not require computations of moment-curvature curve group. This method can take into account material nonlinearity by use of the coupling constitutive relation of materials. Moreover, the geometric nonlinearity is considered by taking account the second-order effect of axial forces. The predictions of the proposed method are validated using experimental and analytical studies.


Author(s):  
Mutlu Secer ◽  
Amanullah Zamani ◽  
Yalcin Isler

High-rise reinforced concrete buildings have technical, economic and environmental advantages for high density development and they have become a distinctive feature for densely populated urban areas around the world. For this purpose, structural design of high-rise reinforced concrete buildings have become forward and particularly serviceability requirements gained more interest. Differential shortening of vertical members is one of the serviceability requirements; however, only a limited number of studies exist. In this study, a practical compensation method was proposed for the differential shortening of columns and shear walls in high-rise reinforced concrete buildings. In the proposed compensation method, vertical members were grouped and the total error was aimed to be minimized by penalizing the higher shortening differences in the groups to simplify the process of building construction. In order to validate the proposed method, a 32-storey high-rise building that was built in Izmir Turkey was investigated considering both the construction sequence and time-dependent effects as shrinkage and creep. Vertical shortening of columns and shear walls in the tower part of the building were calculated. Uniform-grouped compensation method and the proposed penalized errors compensation method with using L1-norm and L2-norm were applied for differential shortenings of columns and shear walls with considering different numbers of member groups. The magnitude of errors for each compensation method was presented and evaluated. Results of the numerical study reveal that the proposed penalized errors compensation method was capable of determining the compensation errors by minimizing the maximum errors efficiently.


2021 ◽  
Vol 6 (7) ◽  
pp. 97
Author(s):  
Stefanus Adi Kristiawan ◽  
Halwan Alfisa Saifullah ◽  
Agus Supriyadi

Deteriorated concrete cover, e.g., spalling or delamination, especially when it occurs at the web of a reinforced concrete (RC) beam within the shear span, can reduce the shear capacity of the beam. Patching of this deteriorated area may be the best option to recover the shear capacity of the beam affected. For this purpose, unsaturated polyester resin mortar (UPR mortar) has been formulated. This research aims to investigate the efficacy of UPR mortar in limiting the shear cracking and so restoring the shear capacity of the deteriorated RC beam. The investigation is carried out by an experimental and numerical study. Two types of beams with a size of 150 × 250 × 1000 mm were prepared. The first type of beams was assigned as a normal beam. The other was a beam with a cut off in the non-stirrup shear span, which was eventually patched with UPR mortar. Two reinforcement ratios were assigned for each type of beams. The results show that UPR mortar is effective to hamper the propagation of diagonal cracks leading to increase the shear failure load by 15–20% compared to the reference (normal) beam. The increase of shear strength with the use of UPR mortar is consistently confirmed at various reinforcement ratios.


2021 ◽  
Vol 244 ◽  
pp. 112768
Author(s):  
Mohammad Syed ◽  
Mohammad Moeini ◽  
Pinar Okumus ◽  
Negar Elhami-Khorasani ◽  
Brandon E. Ross ◽  
...  

2020 ◽  
Vol 146 (5) ◽  
pp. 04020047
Author(s):  
Xin Nie ◽  
Jia-Ji Wang ◽  
Mu-Xuan Tao ◽  
Jian-Sheng Fan ◽  
Y. L. Mo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document