Development and testing of the FAST fuel performance code: Normal operating conditions (Part 1)

2015 ◽  
Vol 282 ◽  
pp. 158-168 ◽  
Author(s):  
A. Prudil ◽  
B.J. Lewis ◽  
P.K. Chan ◽  
J.J. Baschuk
Author(s):  
Chenjie Qiu ◽  
Rong Liu ◽  
Wenzhong Zhou

Abstract The ThO2 fuel has higher thermal conductivity and melting boiling point than the UO2 fuel, which is beneficial to the fast removal of heat and the improvement of fuel melt margin. In this paper, the material properties and thermodynamic behaviors of thorium-based fuel were firstly reviewed. And then the thermal physical properties and the fuel behavior models of Th0.923U0.077O2 fuel and Th0.923Pu0.077O2 fuel have been implemented in fuel performance analysis code FRAPCON and FRAPTRAN. Finally, the performances of Th0.923U0.077O2 fuel, Th0.923Pu0.077O2 fuel and UO2 fuel under both normal operating conditions and transient conditions (RIA and LOCA) are analyzed and compared. The Th0.923U0.077O2 fuel is found to have lower fuel center-line temperature and the thorium-based fuels are observed to have a delayed pellet-cladding mechanical interaction (PCMI) under steady state. Furthermore, the fission gas release, cladding strain and internal fuel energy under transient conditions are found to be lower too. Lastly, the cladding displacement and temperature under transient conditions are also compared. The thorium-based fuel was found to have a higher safety margin and accident resistance than conventional UO2 fuel under both normal operating conditions and accident conditions.


2021 ◽  
Vol 167 ◽  
pp. 112350
Author(s):  
Ilenia Catanzaro ◽  
Pietro Arena ◽  
Salvatore Basile ◽  
Gaetano Bongiovì ◽  
Pierluigi Chiovaro ◽  
...  

2021 ◽  
pp. 153186
Author(s):  
Yang-Hyun Koo ◽  
Jae-Ho Yang ◽  
Dong-Seok Kim ◽  
Dong-Joo Kim ◽  
Chang-Hwan Shin ◽  
...  

Author(s):  
Changbing Tang ◽  
Yongjun Jiao ◽  
Yuanming Li ◽  
Yi Zhou ◽  
Kun Zhang

Abstract The cladding acts as the first barrier to prevent the release of radioactive fission products, requiring its structural integrity to be maintained throughout the whole operation period of nuclear reactor. Therefore, cladding failure due to PCI (pellet claading mechanical interaction) should be avoided as much as possible in fuel design and operating conditions. At the same time, it is necessary to achieve effective control of the cladding stress by limiting the power growth rate etc. However, in the manufacturing process of fuel rod, the MPS (missing pellet surface) defect is inevitably generated. This defect may lead to a substantial increase in the local stress of the cladding, which in turn exceeds its corresponding stress limit, resulting in cladding failure. Accurate simulation of fuel performance caused by such defects will help prevent such failures. The traditional fuel performance analysis codes are based on a 1.5D analysis framework and cannot handle the local asymmetry problem of fuel such as the MPS defect. In order to accurately simulate the PCI phenomenon caused by the MPS defect, this research establishes a fuel performance analysis code based on the ABAQUS software and this code is suit for the 2D and 3D conditions. Based on the established analysis code, the irradiation-thermal-mechanical behavior of nuclear fuel under typical II transient conditions was studied, and the sensitivity analysis of the influence of different MPS sizes on the local stress of cladding was carried out. The simulation results show that :(1)the mises stress, contact pressure and equivalent creep strain of the cladding may be unevenly distributed due to the MPS defect.(2)the MPS defect will result in a more severe contact pressure on cladding during power transient period, which may lead to failure of cladding and should be prevented. The simulation method established in this research could be very help for the performance analysis for the nuclear fuel rods.


Sign in / Sign up

Export Citation Format

Share Document