Application of digital sampling techniques to a “single chip telescope” for isotopic particle identification

2004 ◽  
Vol 746 ◽  
pp. 272-276 ◽  
Author(s):  
L. Bardelli ◽  
G. Poggi ◽  
M. Bini ◽  
G. Pasquali ◽  
N. Taccetti
Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2925
Author(s):  
Mauricio Muñoz-Ramírez ◽  
Hugo Valderrama-Blavi ◽  
Marco Rivera ◽  
Carlos Restrepo

This paper introduces an approach that applies a digital sampling technique for a sinusoidal pulse width modulation (SPWM) multilevel inverter modulation that reduces the total harmonic contents in the output voltage compared to that of classical regular sampling techniques. This new modulation emulates with a high degree of fidelity a natural sampling pulse width modulation (PWM). The theoretical analysis of this new digital technique compared with natural sampling has been validated by simulations and through experiments with a built prototype that performed five–level inverter modulations with vertically displaced carriers in phase disposition. Both simulation and experimental results generate a SPWM output voltage with higher fidelity than classic regular sampling techniques, allowing a reduction of the filtering demands on the inverter output, which in turn can decrease the converter size and its manufacturing costs. As the presented technique is digital, the resulting modulation is more robust against switching noise, jitter, and other system perturbations and the modulation parameters can be changed easily, even in an automated way. For this reason, the modulation introduced here can be a useful tool to perform spectral analysis for different multilevel modulations and systems.


Author(s):  
J.M. Titchmarsh

The advances in recent years in the microanalytical capabilities of conventional TEM's fitted with probe forming lenses allow much more detailed investigations to be made of the microstructures of complex alloys, such as ferritic steels, than have been possible previously. In particular, the identification of individual precipitate particles with dimensions of a few tens of nanometers in alloys containing high densities of several chemically and crystallographically different precipitate types is feasible. The aim of the investigation described in this paper was to establish a method which allowed individual particle identification to be made in a few seconds so that large numbers of particles could be examined in a few hours.A Philips EM400 microscope, fitted with the scanning transmission (STEM) objective lens pole-pieces and an EDAX energy dispersive X-ray analyser, was used at 120 kV with a thermal W hairpin filament. The precipitates examined were extracted using a standard C replica technique from specimens of a 2¼Cr-lMo ferritic steel in a quenched and tempered condition.


2021 ◽  
Vol 147 (3) ◽  
pp. 04020165
Author(s):  
Amin Ariannezhad ◽  
Abolfazl Karimpour ◽  
Xiao Qin ◽  
Yao-Jan Wu ◽  
Yasamin Salmani

Sign in / Sign up

Export Citation Format

Share Document